электричество — Попаданцев.нет http://popadancev.net.s3-website-us-east-1.amazonaws.com база данных в помощь начинающему попаданцу Tue, 02 May 2017 22:55:34 +0000 ru-RU hourly 1 https://wordpress.org/?v=6.4.5 Свинцово-кислотный аккумулятор http://popadancev.net.s3-website-us-east-1.amazonaws.com/svincovo-kislotnyj-akkumulyator/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/svincovo-kislotnyj-akkumulyator/#comments Sun, 12 Mar 2017 23:32:54 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=6485 Наш человек жизнь без электричества представляет плохо. А создать гальваническую батарею особой сложности не составляет (хотя и очень дорого по тем временам).

Но в то же время — создать простейший генератор тоже задача не космической сложности, вопрос только в открытии электромагнитной индукции, а эта задача чисто теоретическая. Но как только появится генератор, сразу возникает вопрос [...]]]> Наш человек жизнь без электричества представляет плохо. А создать гальваническую батарею особой сложности не составляет (хотя и очень дорого по тем временам).

Но в то же время — создать простейший генератор тоже задача не космической сложности, вопрос только в открытии электромагнитной индукции, а эта задача чисто теоретическая. Но как только появится генератор, сразу возникает вопрос — а можно ли хранить электричество впрок?..

Устройство свинцово-кислотного аккумулятора примитивно. Есть две свинцовые пластины — электроды. На аноде чистый свинец, на катоде — диоксид свинца. И серная кислота (25—34% раствор) как электролит. При работе аккумулятора металлический свинец превращается в сульфат свинца, а при зарядке он восстанавливается. На этом, фактически, все. Хотя на самом деле внутри происходят десятки побочных химических реакций. Например, необратимое накопление сернокислого свинца в массе электродов, что со временем «убивает» аккумулятор.

На самом деле, конечно, не все. Современный свинцовый аккумулятор, как правило, намазный. У него остов электродов из свинца с кальцием (чтобы снизить вес) и сурьмой, а в пустотах каркаса — свинец в виде пасты. Для одного электрода чистый губчатый свинец, а для второго оксид свинца. Пасту изготавливают из порошка свинца (или оксида свинца), замешанного на серной кислоте. Причем эта технология была предложена в 1880-м году и с тех пор эти аккумуляторы изготавливаются промышленно.

На картинке — первый изобретенный аккум, автор Гастон Планте, 1859-й год.
Он был очень примитивен, скрученные пластины из свинца, разделенные полотняным сепаратором опускались в слабый раствор серной кислоты (не более 10%). Плохо представляю сколько выдерживало это полотно. При этом оксида свинца там не было, поэтому аккум приходилось много раз «тренировать», пока оксид свинца не отложится. Емкость такого аккума была просто слезной.

Сейчас много чего для этих аккумуляторов придумали — гели вместо кислоты, да и современные автомобильные аккумуляторы, в большинстве случаев необслуживаемые. Сейчас в них используется серебро и куча всяких нанотехнологических покрытый. Но сути это не меняет, аккумуляторы в сути своей не изменились с 1880-го года, просто за зарядом и разрядом их следят микроконтроллеры, которые не позволяют так просто убить аккум.
Вообще, контроллеры, которые следят за зарядом-разрядом это бешеное благо. При перезаряде свинцово-кислотного аккумулятора начинает идти электролиз воды и он выделяет даже не водород, а гремучий газ. На подводных лодках Первой Мировой были несчастные случаи из-за этого, взрыв в подводном положении это страшно.

А теперь смотрим на даты.
Аккумуляторы потоком производятся с 1880-го, изобретены 1859-м. А электромагнитная индукция найдена очень недавно — в 1831-м. При этом более-менее мощные генераторы появились с 1851-го, когда постоянные магниты заменили на электромагниты (при этом для питания этих электромагнитов использовался маленький генератор на постоянных магнитах). То есть по факту имеем: как только появился запрос на накопление электрической энергии, то тут же появилось и решение. Единственно — задержка на подбор самой эффективной технологии с намазными аккумуляторами, именно это и есть смысл патентовать попаданцу.

Если же он будет строить генератор в древности, то постройка аккумуляторов обязательна. Но помним про перезаряд, по крайней мере зарядную станцию нужно хорошо проветривать.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/svincovo-kislotnyj-akkumulyator/feed/ 68
Электромагнитная индукция http://popadancev.net.s3-website-us-east-1.amazonaws.com/elektromagnitnaya-indukciya/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/elektromagnitnaya-indukciya/#comments Sun, 12 Feb 2017 12:14:36 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=6486 Явление электромагнитной индукции сейчас выглядит примитивно. Ну, при перемещении магнита через катушку в ‘этой катушке возникает электрический ток. Ну, физика за 9 класс. Связь магнетизма и электричества, бытовуха какая-то.

Однако, это явление не относится к обычному человеческому опыту, оно — нетривиально, и бытовухой оно стало совсем недавно. А то, что просто и нетривиально — это [...]]]> Явление электромагнитной индукции сейчас выглядит примитивно. Ну, при перемещении магнита через катушку в ‘этой катушке возникает электрический ток. Ну, физика за 9 класс. Связь магнетизма и электричества, бытовуха какая-то.

Однако, это явление не относится к обычному человеческому опыту, оно — нетривиально, и бытовухой оно стало совсем недавно.
А то, что просто и нетривиально — это самое оно для попаданца…

Итак, само явление: если магнитное поле в проводнике тока изменяется — в проводнике возникает электрический ток. Если магнит просто лежит рядом с проводником и изменения магнитного поля не происходит — тока не будет.
То есть в момент, когда мы всовываем магнит в катушку — электричество течет, а как уже всунули — то нет ничего (извиняюсь за разжевывание, но тут выяснилось, что гуманитарии разницы не знают).

Само открытие было сделано Майклом Фарадеем в 1831-м году. К тому моменту паровозы бегали и пароходы плавали, но все электричество если и получали, то от гальванических элементов, а это просто слезы.
Подозрение, что между электричеством и магнетизмом есть связь, появилось примерно в 1820-м году, когда Ханс Кристиан Эрстед показывал в университете опыты с нагревом проволоки электрическим током (от гальванической батареи). Опыт был донельзя примитивным, но при какой-то из демонстраций возле нагреваемого проводника оказался зачем-то оставленный на столе компас, а рядом с компасом оказался человек, который заметил отклонение стрелки (причем неясно, кто именно — то ли сам Эрстед, то ли его помощник).
То есть гальванический элемент был придуман в 1800-м году и просто двадцать лет рядом с проводником не оказывалось компаса. Или не оказывалось человека, который на компас посмотрел бы. Связь электричества с магнетизмом? Да вам бы рассмеялись в лицо!

Но после Эрстеда выяснилось, что там что-то все же есть.
Более того — начали проводить эксперименты с разными проводниками — медь, алюминий, золото (которые ниразу не имеют магнитных свойств), но при прохождении электрического тока магнитные свойства возникают. Все оказалось много страньше, чем ученые того времени вообще могли представить.


Так как в проводнике возникает магнитное поле, то этот проводник можно отталкивать другим магнитом. Поэтому уже через год Майкл Фарадей представил прототип электродвигателя — провод, по которому проходил электрический ток одним концом окунался в ртуть, а в середине ставился магнит (смотрим картинку слева). При включении тока провод крутился вокруг магнита.
Но Фарадею этого оказалось мало.
Он поставил себе цель добиться явления наоборот — получения электричества от магнетизма, а не магнетизма от электричества.
Добился он этого только в 1831 году. Десять лет опытов. Я понимаю, почему после этого он оказался в мормонах.

Однако, электромагнитная индукция была достигнута, а тот прибор, что построил Фарадей оказался, говоря по-современному, трансформатором. В трансформаторе переменный электрический ток создает в сердечнике переменное магнитное поле, которое и создает во вторичной катушке электрический ток. Но на вход такого трансформатора Фарадею неоткуда было взять переменный ток. Поэтому гальванометр отклонялся только тогда, когда первичную цепь замыкали или размыкали.

Тут существует легенда, что гальванометр и сам прибор (из железного кольца и намотанных на него двух катушек) лежали в разных комнатах, чтобы исключить наводки. Фарадей замыкал цепь и шел в другую комнату смотреть. К этому моменту стрелка гальванометра возвращалась к нулю, а Фарадей возвращался менять условия эксперимента. И в какой-то из дней помощник Фарадея разомкнул цепь в комнате с прибором, когда сам Фарадей находился у гальванометра и увидел рывок стрелки.

Итак, что в этой истории важно для попаданца?
31 год — с момента возникновения гальванических элементов до момента осознания возможности электрического генератора.
При этом электрические генераторы уже не надо было вешать на водяные колеса и тому подобное, паровых машин было в достаточном количестве, а уж стационарных и подавно.

Я уже писал, что вряд ли попаданцу стоит самому строить паровую машину. Ну… разве только взять пару патентов?
Но если он попал куда-то в конце 17 или в самом-самом начале 18 века, то открывать законы электромагнетизма для него обязательно.
И мне почему-то кажется, что и строить первые генераторы для него обязательно тоже — для такого великого ученого всегда найдутся средства!

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/elektromagnitnaya-indukciya/feed/ 47
Термоэлектрогенератор http://popadancev.net.s3-website-us-east-1.amazonaws.com/termoelektrogenerator/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/termoelektrogenerator/#comments Sun, 22 Sep 2013 23:03:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=3247 Тема термоэлектрогенераторов всплывает в попаданческих кругах раз за разом. Ну а что — гальваническими элементами много электроэнергии не добудешь (да и дорого), строительство классического электрогенератора — тот еще геморрой, ну так почему не получить электричество всего лишь от разницы температур, как термопара? Ведь китайцы же продают дешевые генераторы на этом принципе?

Ну что же, давайте [...]]]> Тема термоэлектрогенераторов всплывает в попаданческих кругах раз за разом.
Ну а что — гальваническими элементами много электроэнергии не добудешь (да и дорого), строительство классического электрогенератора — тот еще геморрой, ну так почему не получить электричество всего лишь от разницы температур, как термопара? Ведь китайцы же продают дешевые генераторы на этом принципе?

Ну что же, давайте разберем как сам принцип так и то, что делают китайцы…

termogeneratorТакие генераторы работают на эффекте Зеебека, который был открыт Томасом Иоганном Зеебеком в 1821 году по отклонению магнитной стрелки. Сам Зеебек отрицал электрическую природу отклонения стрелки, он вообще считал, что магнитное поле в опыте возникает непосредственно из-за разницы температур. И вообще — магнитные полюса Земли возникли потому, что на полюсах холодно, а на экваторе жарко.

Чтобы понять, что это было за время, можно сказать, что за год до нахождения эффекта Зеебека было доказано влияние электрического тока на магнитную стрелку (спасибо Эрстеду), и именно в этом году Фарадей обнаружил электродвижущую силу — путь к электродвигателям и генераторам тока. Однако, если генератор Фарадея взял «низкий старт», то эффект Зеебека ожидал вплоть до Второй Мировой. Думаете, это случайность?


Впервые некое подобие генератора на эффекте Зеебека собрал Эрстед через пару лет:
termopara_sn-bi
Эрстед использовал спай свинец-висмут, горячие концы нагревал пламенем, а холодные опускал в воду. Штука, конечно, ядовитая, но нас интересует другой вопрос — а какую разность потенциалов при этом получил Эрстед?
На этот вопрос есть ответ.
В-первых давайте посмотрим на термоэлектрический ряд металлов:
termoelectr_ryad
А теперь посмотрим на табличку, собранную Augustus Matthiessen в 1862 году, которая показывает насколько большую разницу потенциалов мы получаем в вольтах относительно свинца на 1 градус цельсия:

Висмут +0,000089
Кобальт +0,000022
Ртуть +0,000000418
Свинец 0
Латунь —0,0000001
Медь —0,0000001
Платина —0,0000009
Золото —0,0000012
Серебро —0,0000030
Цинк —0,0000037
Мышьяк —0,00001336
Железо —0,00001715
Сурьма —0,0000226
Фосфор (красный) —0,0000297

Любуемся микровольтами и понимаем, что Эрстед был молодец, такое зафиксировать не каждому доступно!
Конечно, тут материалы простые (правда, не все доступны в древние времена), но, возможно с более хитрыми материалами будет все поинтереснее? Ну что же, есть и такая данные, но вряд она будет интересна попаданцу, потому что там примерно такие же числа, чуть лучше только у палладия, сплава платина-иридий, никеля и нейзильбера. Что интересно — этот дополнительный список и сейчас не очень-то и доступен…

Пра разнице температур в 100oC и температуре холодного спая в 0°С, пара медь-константан даёт 4,25 мВ, платина-платинородий — 0,643 мВ, нихром-никель — 4,1 мВ.
Милливольт!
При разнице в 100 градусов!

Ну что же, числа не радуют, но ведь Эрстед последовательно втыкал сразу шесть термопар, и если мы поставим шесть тысяч, то ведь напряжение будет заметно? В конце концов, в случае медь-константан при разнице температур в 500°С, при разнице потенциалов 0.027 B ток достигает сотен ампер (из-за малого сопротивления спая).
Вообще, какое там КПД у такого преобразователя?
И на этот вопрос есть ответ:КПД — 1-2%.
Напоминаем, что КПД паровоза на порядок выше!

И мне бы очень хотелось напомнить, что на подобные эффекты очень сильно влияет чистота металлов, для попаданца недоступная. И еще неплохо бы подумать, каким методом попаданец будет сваривать два разнородных металла. Конечно, сейчас в атмосфере инертного газа плазмой можно много чего сварить (но опять-таки не все). Как это сделать в древние времена — это самый настоящий квест на всю жизнь. Это я к тому, что в теории милливольты и 1% КПД, а на практике эффект может быть вообще на грани обнаружения.
Поэтому задумываться про конструкцию самого прибора (в котором должен быть очень заметный перепад температур) и вовсе не стоит.

030_1
Ну как же, возражают оппоненты — ведь есть же в продаже китайские термогенераторы (фотка в начале статьи), и мощность этих генераторов доходит до 200 Вт, а замахиваются даже на киловаттные!

Да, это верно.
Тут прикол ситуации в том, что такие генераторы — полупроводниковые. Там нет спаев металлов, там чудесные полупроводниковые сочетания, типа теллурида германия, селенида гадолиния, моносульфида самария или силицида магния. Ну ладно-ладно, возьмем что-нибудь попроще, покитайскее — типа теллурида висмута, ага. Главное — правильно вырастить монокристалл в помещении с чистотой класса M1.5 😀
ИМХО, такой материал будет доступен попаданцу, если в его распоряжении будет разбитая летающая тарелка, потому что если у него всего лишь УАЗ-696 или даже СУ-25, то таких элементов вы в них не найдете. А даже если и будет материал, то как он будет выращивать полупроводниковые кристаллы?
И кроме всего прочего — КПД современных полупроводниковых преобразователей находится в пределах 5-7%. Самые лучшие (читай «самые дорогие») до сих пор никак не перешагнут предел в 20%, да и то — они сейчас в продаже недоступны. И если вы видите в рекламе надпись «КПД преобразователя 90%», то это имеется в виду преобразователь, спаренный с тем же котлом отопления, который утилизирует тепло, не ушедшее в воду, и данное КПД — это общее КПД нагревательного котла.

Удивительно ли, что сейчас такие преобразователи чаще всего используются для радиоизотопных источников тока космических аппаратов. Вы не помните, с какого года купцы начали возить оружейный плутоний? 😀

Общий вывод — если вы вдруг захотите в древности термоэлектричества — забудьте. Лучше растите селитряницы, по крайней мере материал для них будет доступен.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/termoelektrogenerator/feed/ 35
Переменный ток против постоянного http://popadancev.net.s3-website-us-east-1.amazonaws.com/peremennyj-tok-protiv-postoyannogo/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/peremennyj-tok-protiv-postoyannogo/#comments Sun, 28 Jul 2013 23:03:20 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=1958 На первый взгляд вопрос странный. Однако, как только мы начнем внедрять электрические генераторы, этот вопрос всплывет. И, как оказывается, однозначного ответа не него нет.

Поэтому давайте сравним плюсы и минусы, а начнем с рассмотрения ситуации, которая происходила в реальности — с мини-войны Эдисона и Вестингауза…

Все началось с того, что в 1879 году Эдисон получил [...]]]> На первый взгляд вопрос странный.
Однако, как только мы начнем внедрять электрические генераторы, этот вопрос всплывет.
И, как оказывается, однозначного ответа не него нет.

Поэтому давайте сравним плюсы и минусы, а начнем с рассмотрения ситуации, которая происходила в реальности — с мини-войны Эдисона и Вестингауза…

Все началось с того, что в 1879 году Эдисон получил патент на лампочку. То есть — на лампу накаливания с углеродной нитью. Это была не первая лампочка накаливания, идея висела в воздухе. Но это была первая лампочка, которая годилась к массовому производству — это был не макет, а готовая к внедрению модель.

Весь смысл изобретения в том, что до электролампочки электричество в быту было не нужно. Сейчас у нас куча кухонных комбайнов, стиральных машин и пылесосов. Тогда с этими задачами справлялась служанка (и что-то мне подсказывает, что готовила она лучше Moulinex`а в моих руках). До холодильников и радиоприемников дело еще не дошло, а все остальные применения были промышленными. Даже бытовой электромеханический вибратор был запатентован в 1880 году (на следующий год после изобретения лампочки, и является одним из первых бытовых электрических приборов).

edison4generatorИтак, годная к продаже лампочка была, но кому она была нужна, если жилые помещения были неэлектрифицированы?
Томас Элва Эдисон был настоящим американцам и увидел здесь очень широкие возможности для бизнеса.
Он создал «Эдисон Электрик Компани», создал генератор постоянного тока (картинка слева), построил электростанцию в Нью-Йорке и начал протягивать электрические сети — сначала для освещения улиц, а потом и квартир.
Но так как генератор у него был постоянного тока и сети он протягивал тоже постоянного тока.
Он был первый и всё, на первый взгляд, было в шоколаде.

Однако, случилось непредвиденное.
Тесла придумал генератор переменного тока и за космическую сумму в 1 млн долларов продал пакет из 40 изобретений по оборудованию переменного тока в компанию Westinghouse Electric. Это произошло в 1888 году, а с 1890 года компания Эдисона почувствовала жесткую конкуренцию.

Борьба была нешуточная.
И велась она, как ни странно, не в технической области (тогда это все было слишком ново и мало кто понимал разницу), а именно в области PR. Эдисон доказывал не эффективность использования постоянного тока, а именно то, что понимал обыватель — что постоянный ток для здоровья куда менее опасен, чем переменный. Сотрудники Эдисона ездили по городам и публично демонстрировали, как переменный ток убивает бродячих животных. Апофеозом оказался слон, который затоптал пятерых в Нью-Йорке и владелец которого решил избавиться от животного. Слон был убит переменным током, это было снято на кинопленку и в дальнейшем демонстрировалось как учебный фильм. Желающие могут найти это видео в википедии — слониху звали Топси, ей в 2003 году зачем-то поставили памятник.

Однако, так случилось, что Эдисон сам себя перехитрил.
В то время приговоренных к смерти преступников казнили через повешение. Надо сказать, не самый эстетичный вид казни, а тут — эпоха просвещения, электрическое освещение, монгольфьеры летают, Жюль Верн книги пишет — и казнь через повешение. Как-то не комильфо.
Но почему-то, вместо использования обкатанной технологии гильотины, специально созданный комитет по обновлению методов казни обратился к Эдисону.

Эдисон сначала отказался с ними сотрудничать — его наука таким не занимается.
Но потом ему пришла «гениальная» идея. Он посоветовал использовать для казни переменный ток конкурента — чтобы этого конкурента очернить. Все-таки одно дело упокоенный слон, а другое дело — казнь преступников.

Первый электрический стул сделали в 1890-м, но первая же казнь оказалась ужасной. Приговоренный к смерти отказывался умирать. Его в общей сложности долбали током 9 минут и скорее зажарили электричеством, чем убили. В общем, казнь получилась жуткая, куда страшнее чем ему бы просто отрубили голову. То есть вроде бы все произошло очень удачно с точки зрения Эдисона.
Однако, Эдисон не рассчитал общественное мнение. Авторитет Эдисона в области электричества в то время был непререкаем. И люди забыли, что казнь проводилась методами конкурента Эдисона, важно было лишь то, что посоветовал это Эдисон. То есть виновником такой казни оказались совсем не конкуренты, чей переменный ток использовался. И люди отвернулись от Эдисона, в прессе много писали против него и в результате — в электрической розетке мы все сейчас имеем переменный ток.

acdcОднако, если взять Нью-Йорк, который первым начал электрифицироваться постоянным током, то лифты, вентиляторы и помпы, работающие на постоянном токе, были отключены только в 2007 году, а метро до сих пор ездит на постоянном токе (и отнюдь не только в Нью-Йорке). Победа переменного тока ни у кого не вызывает сомнения, но в 2005 году в Нью-Йорке было еще 1600 потребителей сети постоянного тока… Пацаны не знали?

Давайте это выясним.
Просто сведем плюсы постоянного тока и переменного.

Итак, ПЛЮСЫ ПОСТОЯННОГО ТОКА:

1. Некоторые электрические приборы (например, радио или электролитическая ванна) должны питаться постоянным током. И в начальных условиях будут важны именно устройства с питанием от постоянного тока — попаданцу нужна гальваника. В случае постоянной сети мы его и так имеем, нам не нужен выпрямитель, который в древности сделать либо очень сложно, либо вообще нельзя. Особенно весело с силовыми выпрямителями, рассчитанными на большие токи-напряжения. Вообще механические выпрямители — это жесть! Но и ртутные выпрямители (игнитроны) тоже не подарок.

2. Аккумуляторы заряжаются постоянным током. Никакого геморроя с выпрямителями.

3. Простое согласование потребителей постоянного тока. В переменном токе есть такой параметр, как «косинус фи» (power factor — PF). Он определяет согласованность между активной и реактивной мощностью, то есть между фазами тока и напряжения. Если у вас мощная нагрузка в сети переменного тока (например, станочный парк в цехе), то она при некоторых условиях может вызвать рассогласованность в фазах. А это ведет к проблемам на генераторах переменного тока, ну и в нашей стране за такое рассогласование просто штрафуют.
У постоянного тока такое может возникать разве только при переходных процессах и во внимание не берется.

4. Самые простые вольтметры и амперметры — магнитоэлектрические, но они не в состоянии измерить параметры в сетях переменного тока. Поэтому приходится использовать другие схемы, часто не такие точные и надежные. Когда изобрели переменный ток, то его измерение было большой проблемой. Скорее всего приборы для переменного тока и для попаданца окажутся головной болью. И не надо забывать, что главным прибором, запущенным в массовое производство, будет не вольтметр (потребность в которых единицы экземпляров), а электрический счетчик. Без счетчика никакой продажи электроэнергии не будет.

5. Расчет электродвигателя постоянного тока со щетками очень прост. Скорость вращение регулируется просто напряжением без всяких проблем, главное чтобы в разнос не пошел.

6. Линии электропередач на постоянном токе очень перспективны, они позволяют передавать электричество на большие расстояния с минимальными потерями. Однако, тут есть своя ложка дегтя — напряжения должны быть очень высокими, польза будет от ЛЭП постоянного тока напряжением в 500 киловольт и выше. А так как и генераторы и потребители сейчас все используют переменный ток, то такие линии оказываются задачей очень сложной. Как вам выпрямитель на пол-миллиона вольт? А если он тиристорный, да на 800 киловольт, да на мощность 8 ГВт? Это же просто эпическое устройство!
Естественно, таких линий на нашей планете мало, можно пересчитать на пальцах. И хотя этим преимуществом постоянного тока попаданец воспользоваться не сможет, это все равно преимущество.

7. В некоторых случаях — метро или трамвай, можно ограничиться одним силовым проводом. Вторым проводом являются рельсы, на которых нет напряжения, это просто «земля», безопасная для пользователя. В случае с переменным током такой финт не проходит.

ПЛЮСЫ ПЕРЕМЕННОГО ТОКА

1. На короткие дистанции переменный ток передавать проще. Много-много проще и с куда меньшими потерями.
Именно этим в основном, и определяется то, что пользователи ушли от постоянного тока Эдисона. Эдисон раздавал 110В, но у него не получалось раздать дальше, чем 2.6 км от электростанции. С переменным током это решается просто — понижающими подстанциями, но на постоянный ток трансформатор не поставить, а вводить в квартиру вольт 600 может оказаться опаснее гильотины на кухне.

2. Генератор переменного тока конструктивно проще. Если правильно подойти, его несложно сделать бесколлекторным и асинхронным с самовозбуждением, когда не нужны щетки и постоянные магниты (а мощный магнит — больное место в древности). Особенно хорошо получаются трехфазные генераторы. Собственно, я даже не знаю, существуют ли сейчас генераторы со щетками и постоянными магнитами.

3. Соответственно, и электродвигатели проще. Классический асинхронный электродвигатель не имеет щеток и магнитов. Сейчас еще очень много электродвигателей с коллекторами — но это потому, что щетки сейчас сделать несложно, для них применяется специальный сплав с графитом. Я очень сомневаюсь, что это так же легко сделать в древности. Сейчас существуют коллекторные двигатели, которые схемотехнически переключаются между постоянным и переменным током, но я не знаю, какому току записать это в плюс.

4. Обороты электродвигателей переменного тока привязаны к частоте. Изменением напряжения можно изменять обороты только у маломощных двигателей, да и то в узких пределах (за счет скольжения магнитного поля), но при этом двигатель начинает греться. Чтобы изменить количество оборотов, нужно менять частоту переменного тока. Из-за такой конструкции расчет асинхронного двигателя — то еще развлечение. Но для многих применений стабильность оборотов — это благо, это может оказаться ценнее всех остальных свойств.

5. Имея переменный ток, очень просто поучить из него требуемое напряжение — как повышенное, так и пониженное с помощью простейшего трансфрматора. В сетях постоянного тока понижение напряжения связано с потерями, а повышение… гм, я даже не знаю, как простыми методами, годными для древности, повысить постоянное напряжение.
Скажу больше — это просто катастрофический недостаток для постоянного тока. Именно это тормозило развитие сети постоянного тока больше, чем что-либо еще (про подстанции я уже писал).

6. С точки зрения пользователя, у переменного тока нет полярности. Конечно, кое-какая разница между проводами есть, но не для пользователя. Для него подключение электроаппаратуры выглядит очень простым. Да и для электрика тоже.

Итак.
Какой тут может быть вывод?
ИМХО, если у попаданца основной задачей является гальваника (а это вполне может случиться) и электростанция рядом с производственными помещениями, то его выбор — постоянный ток. Лампам накаливания все равно чем питаться, а если и понадобиться электродвигатель — то маломощный можно будет сделать для постоянного тока.

Однако, если попаданец решит ввести искусственное освещение в городе, то это без вариантов переменный ток со всей инфраструктурой — понижающими подстанциями, электрическими счетчиками и прочим.

P.S. Я, скорее всего, что-то упустил. Просьба дополнять.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/peremennyj-tok-protiv-postoyannogo/feed/ 205
Радио — когерер http://popadancev.net.s3-website-us-east-1.amazonaws.com/radio-kogerer/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/radio-kogerer/#comments Thu, 13 Jun 2013 12:49:40 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=2574 Когерер — прибор детекции сигналов ВЧ, был изобретен Эдвардом Бранли в конце девятнадцатого века. Просуществовав всего лишь тридцать лет, он уступил место более чувствительным и удобным лампам…

Принцип действия когерера основан на том, что сильная электромагнитная волна, проходя через тонкие механические соединения, размыкает или замыкает цепь. То есть это всего лишь механический ключ, который реагирует [...]]]> Когерер  — прибор детекции сигналов ВЧ, был изобретен Эдвардом Бранли в конце  девятнадцатого века.
Просуществовав  всего лишь тридцать лет, он уступил место более чувствительным и удобным лампам…

Принцип действия когерера основан на том, что сильная электромагнитная волна, проходя через тонкие механические соединения, размыкает или замыкает цепь. То есть это всего лишь механический ключ, который реагирует на силу электромагнитного импульса.

Отсюда — все плюсы и минусы когерера.
В плюсах — крайняя простота и возможность построения в любую эпоху.
В минусах:
Во-первых, так как когерер это выключатель, который имеет всего два состояния — то никакой модуляции сигнала быть не может. Только азбукой Морзе. Про голос и радиовещания можно не вспоминать.
Во-вторых так как когерер это механический переключатель, то электромагнитная волна должна быть достаточной силы. То есть чувствительность у когерера очень слабая. Ему нужно мощные радиостанции, и чтобы недалеко.
Ну и в-третьих, главное — когерер это только приемник.
А в приемниках недостатка не было — можно построить и детекторный и даже кристадиновый. А вот с передатчиками с самого начала была засада — приходилось строить искровые, которые были намного дороже разумного и к тому же забивали эфир телеграфным кодом, мешая работать нормальным звуковым радиостанциям.

Однако не стоит отворачиваться от него, как от «тупиковой ветви эволюции» развития радио.

Существует ряд особенностей, делающих этот приборчик привлекательным для попаданца.
Как упоминалось, он прост в изготовлении:

Как видно из рисунка, когерер состоит из двух контактов (их желательно изготовить из инертного металла, как пример, Попов использовал платиновые пластинки),
контейнера из изолятора (традиционно — трубка из стекла, но почему бы не деревянный ящичек?)) и металлического порошка.

На последнем мы остановимся наиболее подробно.
Дело в том, что два года назад я решил из любопытства собрать «Грозоотметчик» конструкции Попова.

Грозоотметчик конструкции Попова На первый взгляд — ничего сложного.
Однако после того, как я собрал когерер, я столкнулся с тем, что стальной порошок, насыпанный в спрессовался,
вследствие чего сопротивление элемента резко падало даже в отсутствие сигнала!
(в качестве источника радиоволн широкого спектра я использовал блокинг генератор с повышающей обмоткой,
подсоединенной к искровому промежутку из двух гвоздей).
Даже встряхивание и помешивание порошка не исправило ситуацию.
Порошок был получен с помощью гвоздя и напильника.
Решив, что размер имеет значение, я мелко нарезал очищенную от ржавчины стальную проволоку (D=1,3 мм)
кусочками длиной по 2-3 мм.
Работа когерера действительно улучшилась.
Однако и сама насечка и стальной порошок начали окисляться буквально через два дня даже
в плотно закупоренном контейнере (пузырек из под лекарства, в таких раньше продавали зеленку и марганцовку).
В итоге я сделал насечку нержавеющей проволоки и наполнил ей когерер.
Возможно из-за большего калибра проволоки чувствительность ухудшилась в 1,2-1,3 раза.
Т.е. изначально, со стальной проволокой, приемник регистрировал сигнал на расстоянии ~20 м.
С нержавеющим наполнителем предельная дальность составила уже ~15 м.
Медная пыль давала довольно низкое сопротивление и регистрировала сигнал на расстоянии не больше десяти метров.
Хотя возможно я сделал слишком мелкий порошок (насечка из очищенной от лака проволоки проводила электричество
не хуже простого провода)
В наиболее совершенных конструкциях позапрошлого века использовался серебряно-никелевый порошок, цинковый с примесью железа и смесь железных опилок, ртути и масла.

В 1899г Чандра Боше изобрел ртутный когерер.
Конструкция его не так проста, как порошкового
E — изолирующее основание
M — ртуть (один из электродов)
P — слой нефти (для изоляции и предотвращения испарения)
D — второй электрод (вращающийся медный диск)

 

При регулировке слой нефти доводили 0,05-0,1 мм.
При каждом прохождении сигнала реле сдвигало анкер простейшего часового механизма,
который немного поворачивал диск, уничтожая контакт.
Такой когерер был гораздо чувствительней порошкового, и его можно было настраивать,
однако наличие жидкости и громоздкость механизма делало его крайне чувствительным к качке и тряске.

 

Помимо рассмотренных выше основных существовало множество  иных конструкции, применявшихся уже не так широко в силу каких-либо обстоятельств.

Игольчатый вакуумный когерер Игольчатый трехконтактный когерер.
Чувствительный, но требующий высококачественного микрометра.
Подобный использовал Маркони в своем приемнике, поместив его в вакуум.


Marcony's mercury coherer

 

Еще одна конструкция Гульельмо, созданная им по подобию ртутного.
c,h, l -элементы подставки
g — микровинт
Капелька ртути ртути находилась между двумя цилиндрическими электродами,
неподвижным угольным d и регулируемым железным f.
(Непонятная деталь в самом низу — наушники! Да, последние три конструкции пригодны для приема тонового сигнала!)

 

Все  когереры, рассмотренные выше, являются двухполюсниками.
Поэтому типовую схему включения можно изобразить вот так:


К — это собственно когерер
А — антенна
З — заземление
Б1 и Б2 — источники питания (в моем случае когерер рассеивал в среднем 0,06 Вт, так что
подбирать придется под нагрузку)
Р — усилитель. Во времена когерера применялось реле.
Г и М — приборы регистрации сигнала (Г — гальванометр, М — механизм обнуления когерера
(молоточек у Попова или часовой механизм в ртутном когерере))
Для повышения селективности приемника параллельно когереру ставился колебательный контур, питаемый через катушку связи.

 

При всех своих недостатках когерер успешно использовался на протяжении поколения.

Именно когерерные приемники стояли у истоков радиосвязи и радиолокации.
Безусловно, он проигрывает любым другим детекторам в чувствительности и широте применения. Однако не стоит забывать о его простоте, дешевизне, надежности.
На первых порах он станет надежным подспорьем в развитии технологии связи.

Однако,  прежде чем внедрять когерер, подумайте сначала о радиостанциях, которые он будет принимать!

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/radio-kogerer/feed/ 48
Получение алюминия http://popadancev.net.s3-website-us-east-1.amazonaws.com/poluchenie-alyuminiya/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/poluchenie-alyuminiya/#comments Mon, 11 Mar 2013 11:21:55 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=1989 Легче перечислить те области нашей жизни, где алюминий не используется, чем те, где он практически незаменим. Называя вещи своими именами, время, в котором мы сейчас живем, следовало бы назвать не железным веком, а алюминиево-пластмассовым…

Алюминий для пападанца это такой рог изобилия, ништяков и эксклюзива, что»алюминий» и «золото» для него практически синонимы. Алюминий, например, это удивительная [...]]]> Легче перечислить те области нашей жизни, где алюминий не используется, чем те, где он практически незаменим.
Называя вещи своими именами, время, в котором мы сейчас живем, следовало бы назвать не железным веком, а алюминиево-пластмассовым…

Алюминий для пападанца это такой рог изобилия, ништяков и эксклюзива, что»алюминий» и «золото» для него практически синонимы.
Алюминий, например, это удивительная для аборигенов фурнитура и бижутерия, напоминающая серебряную, сверхлегкий доспех из алюминиевых сплавов(даже легче кожаного, но по защитным качествам приближающийся к стальному — недаром сейчас из сплавов системы AlZn делают противопульную броню), котлы, сковороды и другая походная посуда (по теплопроводности и прочности почти как медная, но меньше прогорает и легче раза этак в три) — у вояк и кочевников такие котлы и доспехи улетят как горячие пирожки, даже если брать по три веса золотом. Кроме того, алюминий это отличные провода (гораздо более доступные, чем медные, ведь медь и во времена попадания страшно дорога и не везде продается), разнообразные радиаторы, компонент ВВ, наполнитель для специальных красок и пластмасс, восстановитель для добычи всяких разных хитрых и редких металлов… Список можно без труда продолжать.
Так что если наш попаданец овладел электричеством, то ему самое время заняться добычей этого важнейшего металла.

С самого открытия металла и по наше время для его добычи использовались отнюдь не кустарные, а очень сложные технологии, высокие давления и температуры, дефицитные материалы и большие заводы. Но самое удивительное, что нет никаких принципиальных препятствий для его производства нашим попаданцем буквально на коленке, естественно, при условии что у него руки растут откуда надо, а на уроках химии он не спал и не пинал балду… Все упирается лишь в наличие электрогенератора постоянного тока. Остальные принадлежности попаданцу вполне доступны.

Но путь все же тернист, и на нем ожидают многочисленные засады 🙂

Металлургия алюминия неизбежно включает в себя две фазы.

Первая фаза — добыча и обогащение первичного сырья, то бишь отделение соединений алюминия от примесей. Хотя алюминий в природе находится в виде сложных соединений типа силикато-алюминатов, сульфатов и их гидратных комплексов(то бишь, содержащих химически свзяанную воду), ценность сырья всегда условно приято выражать в процентах содержания гидроокиси алюминия, или глинозема — Al(OH)3.

Хотя мы все проходили в школе, что алюминий — «серебро из глины», в реальности добывать его из глины мало кому вообще приходит в голову. Сейчас мировая алюминиевая промышленность в качестве сырья предпочитает боксит — чрезвычайно богатый алюминием минерал, но, к сожалению, не везде встречающийся в нужном количестве. Единственное исключение — Россия, где РусАл господина Дерипаски, работая по уникальным советским технологиям и пользуясь халявным электричеством с сибирских ГЭС, до сих пор эксплуатирует богатейшие месторождения алунитов, апатитов и других бросовых пород, на которые во всем остальном мире из-за наличия богатых бокситовых залежей в странах третьего мира никто просто не обращает внимания.

Но попаданцу все-таки придется иметь дело с разнообразными сортами глины. Она обычно не так богата алюминием, как боксит(нужного глинозема, там обычно всего где-то 15-20%, хотя как повезет — в отдельных породах и до 80% может доходить), но зато есть абсолютно везде. Подходит практически любая, имеющая относительно стабильный состав.
Главные примеси — кремнезем(большинство), оксид титана, оксиды железа(не больно много, но мешаются невероятно на последующих стадиях производства, вызывая ненужную трату реактивов и мощности), щелочных и щелочноземельных металлов. А в примесных количествах там чего только нет — от органики до тяжелых металлов, и в принципе, после разделения всему этому попаданец может легко найти применение.
Способов отделения глинозема попаданцу доступно только два — кислотный и щелочной( соляная кислота с едким натром для него перестают быть проблемой, как только появился доступ к соли, и, опять же, к электричеству).

Первый способ — хорошенько прокипятить глину со щелочью в плотно закрытом а-ля автоклав железном котле. Плюсы — процесс идет довольно быстро и для него не нужны какие-то очень уж специфические условия. Глинозем растворится весь, а все железо останется в осадке. Минусы — нужна обязательно железная ёмкость(любую другую из доступных просто разъест), в раствор вместе с глиноземом попадет весь ненужный кремнезем, которого там ну очень много. Так что для его удаления придется титровать кислотой, получив, правда, замечательный побочный продукт под названием силикагель.

(Подробнее можно погуглить на тему «процесс Байера». Я рекомендую книгу «Металлургия алюминия», И.А. Троицкий, В.А. Железнов )

Второй способ — растворить в кислоте предварительно осторожно прокаленную для удаления связанной воды, увеличения поверхности и химической активности(т.н. «вскрытую») глину.
Плюсы — можно растворять в глиняной или стеклянной емкости, а весь кремнезем, которого в глине львиная доля, останется в осадке.
Минусы — просто так глину растворить не получится. Реакция пойдет невыносимо медленно. Кроме того, есть одна тонкость — диапазон температур для правильного прокаливания довольно узок (коридор градусов 200 начиная где-то с 300°С) и попаданцу придется определять его методом тыка. Глинозем же все равно растворится не весь, а всего где-то треть из того, что есть в глине, но зато растворится все железо и остальные сходно ведущие себя слабоосновные примеси. В итоге, как и в первом способе, скорее всего придется аккуратно осаждать всю эту прелесть небольшим количеством крепкой щелочи. Главное тут не пропустить момент начала выпадения осадка глиноземного геля. Тут ценным побочным продуктом будет осадок довольно чистой ржавчины — гидроксида железа, который после накопления, в конце концов, можно использовать, например, в качестве высокочистой железной руды.
(подробнее о кислотном способе можно почитать, например, вот в этих статьях:
Extraction of Alumina from Local Clays by Hydrochloric Acid Process, A.A. Al-Zahrani and M.H. Abdul-Majid,
Extraction of Alumina from Clays by the Lime-sinter Modification of the Pedersen Process. BY RAYMONLD. COPSON,JOHN H. WALTHALLA, TRAVIS P. HIGNETT, New York Meeting. February 1944)
Короче говоря, после первой фазы тем или иным способом попаданец получит не сильно большое (принимая во внимание количество переработанной глины), но все же приличное количество насыщенного раствора солей алюминия. Скорее всего, это будет хлорид AlCl3.

Теперь начинается вторая фаза металлургии алюминия и наступает еще большее веселье — нужно как-то добыть сам металл!

Казалось бы, все просто — пускаем ток, и дело в шляпе.
Но тут ожидает самое главное разочарование — электролизом водного раствора при обыкновенных, доступных для попаданца источниках тока и оборудовании алюминий не получить. Слишком уж он активен, так что на электролиз попаданцу годится только расплав.
В наше время идут по самому рентабельному пути — перерабатывают руду по первому способу, доводя затем раствор до перенасыщения и добавляя затравку глиноземного геля. В результате весь чистый глинозем выпадает в осадок, его прокаливают и получают чистый оксид алюминия Al2O3, который и идет дальше на электролиз.
Окись алюминия — тугоплавкий огнеупор, и просто так за здорово живешь не расплавится. Тут нужно больше 2000°С. Поэтому независимо друг от друга сразу два инженера начала 20 века Холл и Эру придумали растворять его в расплаве криолита(это смешанный фторид алюминия-натрия состава Na3AlF6, из-за редкости приготовляемый искусственно), но все равно вести электролиз при ~900°С в графитовой ванне графитовыми же электродами.
Попаданцу, понятное дело, подобное не покатит. Работы со фтором ему не потянуть, фторидов взять негде, с постоянно горящим графитом напряги, да и 900 градусов в ванне как-то многовато. Ему бы что-нить поближе и подешевле, чтоб на дому.
Вот, например, хлорид уже есть — пускай он и будет, к тому же электролиз хлорида на треть более энергоэффективен.

Отлично, только тут ждет еще одна засада — хлорид алюминия, так же, как и хлориды магния и кальция, ужасно гигроскопичен, так что на воздухе сосет из него воду и просто расплывается в кашу, а при попытке прокалить разлагается, гад, на оксид и хлороводород. В общем, нужна безводная соль. Как же её получить? Из водного раствора — никак.
В нашей реальности корпорация Alcoa провела разработки на эту тему и самое простое, что они придумали, это обрабатывать глинозем смесью хлора с хлороводородом в кварцевой печке при температуре выше 1000°С. Безводный хлорид потом конденсируется в герметичном холодильнике.
Такое попаданцу тоже уж точно не подойдет — кварцевая печка на ближайшем базаре не продается, а чтобы самому её сделать, надо сначала пуд соли съесть. Да и герметичность надо как-то обеспечивать…
Кажется тупик. Не видать бедолаге алюминия, как своих ушей, а он уже и губы раскатал…

Попаданец с горя напивается, и, мучимый похмельем, решает на следующий день отмокнуть в лохани. Заодно и помыться можно. Он берет кусок собственноручно сваренного мыла, до скрипа надраивается мочалкой, и матеря про себя местную жесткую воду, тянется за следующим куском, попутно разгоняя к краям лохани все, что осталось от его произведения — покрывающие всю поверхность воды, абсолютно не желающие ни мылиться, ни растворяться, ни даже просто смачиваться водой легкие белые катышки.

И тут вдруг он, подобно Архимеду, выскакивает голый из лохани с криком «Эврика!», ведь решение головоломки с алюминием как раз в этих катышках и заключается.
Знакомьтесь: алюминиевое мыло, старший кузен тех самых белых катышков, то бишь «мыл» магния и кальция!

Фишка в том, что большинство высокомолекулярных органических кислот (в просторечии именуемых «жирными» по своему производному — жирам) дают со всеми металлами, кроме щелочных, абсолютно нерастворимые в воде соли. Больше того — эти «мыла» с водой даже не смешиваются, и в своем составе химически связанной воды абсолютно не содержат. Это свойство, повсеместно используемое химиками, делает жирные кислоты идеальным экстрагентом для смешанных водных растворов металлических солей. Кроме всего прочего, эти «мыла» всплывают еще и в очередности, строго соответствующей ряду напряжений металлов. То бишь, пока не выйдет весь алюминий, кальций и магний так и останутся плавать. И это тоже еще не все! Ионы щелочных металлов здорово подвижны. Поэтому если теперь нагреть мыло с безводным хлоридом щелочного металла(а лучше их смесью), натрий или калий перейдут в мыло, поменявшись с алюминием, а тот уйдет в смесь хлоридов, давая очень легкоплавкую тройную эвтектику AlCl3-KCl-NaCl(при оптимальном процентном соотношении солей плавится всего при 70С!!!). И заметьте себе — от воздуха она сверху все еще закрыта еще твердым алюминиевым мылом!

(подробнее об экстракции алюминия через соли жирных и других органических кислот можно почитать здесь:
US patent 4415412,
«Экстракция металлов некоторыми органическими катионобменными реагентами», Э.Н. Меркин, Москва, 1968,
а также, как всегда, спросить гугл на тему «стеарат(или, к примеру, пальмитат) алюминия» 🙂 )

Короче говоря, попаданец, выскочив из лохани, доливает в горшок с раствором хлорида алюминия раствора обычного натриевого мыла, отделяет всплывшее мыло алюминиевое, сушит, накладывает в широкий горшок поверх хорошо прокаленной смеси калийной и поваренной солей, греет на водяной бане и через некоторое время сует туда два электрода.
Придя с обеда, он обнаруживает на нижнем, стальном(а лучше свинцовом), долгожданный слой алюминия! Бинго!

Конечно, все вышеописанное довольно далеко от идеала экономичности. Электричества, соли и мыла нужно на первых порах очень много. Но потом, после оптимизации процесса, реактивы регенерируются, к тому же имеются сами по себе ценные побочные продукты — силикагель, оксид титана, шламы…

Но вот зато когда наконец продается с аукциона (буквально за мешок золота:)) первый алюминиевый котел, попаданец забывает обо всех пройденных терниях, и его маленькая мастерская чудес переходит на совершенно новый уровень этих самых чудес!

А это однозначно окупает все затраты.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/poluchenie-alyuminiya/feed/ 99
Резистор http://popadancev.net.s3-website-us-east-1.amazonaws.com/rezistor/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/rezistor/#comments Thu, 24 Jan 2013 00:48:58 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=1724 Резистор (раньше говорили «сопротивление») — самый простой и, вероятно, самый распространенный элемент в электронных схемах. По сути — это просто вставка кусочка цепи, который «плохо» пропускает электричество. Возникает вопрос — а зачем такое чудо нужно?…

В реальности понимание необходимости такого элемента возникло не сразу. Собственно, когда все электричество ограничивалось либо опытами со статическими разрядами, либо [...]]]> Резистор (раньше говорили «сопротивление») — самый простой и, вероятно, самый распространенный элемент в электронных схемах.
По сути — это просто вставка кусочка цепи, который «плохо» пропускает электричество.
Возникает вопрос — а зачем такое чудо нужно?…

71px-Resistor_symbol_GOST.svgВ реальности понимание необходимости такого элемента возникло не сразу. Собственно, когда все электричество ограничивалось либо опытами со статическими разрядами, либо с гальваническими элементами, необходимость резистора сомнительна.
Просто потому, что электрический ток при таком использовании должен протекать по одной линии цепи, нигде не разветвляясь — понятно, что ослабления тока не требовалось.

Однако, как только появились разветвления — появились и резисторы.
Если представить, что электричество — это поток воды, то конденсатор — это накопительная емкость, а резистор — трубы профилированного сечения, чтобы емкости наполнялись с разной скоростью, или вентили (если резистор переменный).
Вообще переменные резисторы (в виде реостатов) появились первыми, когда потребовалось регулировать обороты первых электродвигателей.
Когда пошла электроника и возникли активные усилительные элементы (электронные лампы) резистор начал использоваться во всю силу. Резистор балансирует нагрузку и режим смещения в усилительных каскадах. Вообще применений резистора на удивление много. Но об этом — в других статьях.

Итак — резистор, это кусочек цепи с высоким сопротивлением. А каким образом этого добиться?
Элементарно — делая резисторы из материала с высоким сопротивлением.
При этом важны два параметра — длина и толщина материала, через которого проходит ток.

В микроэлектронике, где резисторы напыляются и являются фактически двумерными, их считают «квадратами». То есть известно удельное сопротивление, и если сделать резистор квадратным — то его сопротивление и будет равно удельному. Если сделать его в два раза длиннее, чем шире — сопротивление будет в два раза больше. Если сделать в два раза шире, чем длиннее — то его сопротивление будет половина от номинального.
Но это относится к тонопленочным резисторам, который 2D, а у нас будет вполне объемный 3D и мы будет считать не только его ширину, а и толщину, поэтому будет считать его сечение.

Кстати — поэтому тонкий провод имеет большее сопротивление, чем толстый. Это бывает важно в катушках, где много витков из тонкого провода.

Однако, на практике материалы дают ограничение сопротивление резисторов.
И связано это с мощностью резистора — то есть какой ток он способен пропустить не сгорев и даже не раскалившись.
Например, тот же нихром вроде бы идеален для резисторов — но только маломощных, потому что при нагреве его сопротивление изменяется. Ну, или придется делать очень толстые и длинные куски нихрома. Вообще проволочные резисторы — неплохое решение. аль только, сплавы для них дорогие — нихром, фехраль, хромаль и т.п.
Единственно — если они получаются слишком длинные и их приходится навивать на основу, то просто так навить нельзя, будет индуктивность. Нужно сложить этот провод пополам и уже в таком виде навить — ток будет проходить и туда и обратно и индуктивность будет скомпенсирована.

Стоит еще помнить, что проволочные резисторы не будут иметь высокого сопротивления. У того же нихрома сопротивление однородного куска провода длиной один метр и сечением в один квадратный миллиметр будет всего чуть больше 1 Ома.

Еще один тип — резисторы из графита (вплоть до рисования линий на бумаге для очень маломощных и высокоомных резисторов).
Сейчас применяются угольные резисторы, у которых сопротивление куда как побольше, чем у проволочных.
Они бывают двух типов — композиционные и тонкопленочные.
Композиционные делают из смеси угля, кремнезема и бакелита. Удобны тем, что в смесь можно давать разный процент угля и получать резисторы одного размера, но разного сопротивления. Для высоких частот эти резисторы плохие — у них есть емкостная составляющая и они «шумят». Зато их легко можно делать большими и рассеивающими достаточную мощность.
Тонкопленочные резисторы — маломощные. Производство будет посложнее — угольный слой наносят на керамическую основу при 1000°С, при этом требуется обеспечить высокую чистоту. Вряд ли попаданец этим займется, хотя задачу на будущее нужно поставить.

В общем — несмотря на свою простоту, к резистору нужно относится внимательно.
Ведь кроме прочего обязательно возникнут вопросы точности заданного сопротивления и низкая стабильность. Экспериментов придется провести много.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/rezistor/feed/ 57
Лейденская банка, конденсатор http://popadancev.net.s3-website-us-east-1.amazonaws.com/lejdenskaya-banka-kondensator/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/lejdenskaya-banka-kondensator/#comments Thu, 17 Jan 2013 23:55:03 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=381 Со школы все слышали про чудесную электрическую вещь с названием «лейденская банка». Однако, пообщавшись с некоторыми моими друзьями, далекими от техники, я с удивлением обнаружил, что лейденская банка в их понимании — некий чудесный артефакт, уступающий разве что только «неразгаданным изобретениям Теслы». К сожалению, лейденская банка — это всего лишь примитивный конденсатор, причем примитивный он [...]]]> Со школы все слышали про чудесную электрическую вещь с названием «лейденская банка». Однако, пообщавшись с некоторыми моими друзьями, далекими от техники, я с удивлением обнаружил, что лейденская банка в их понимании — некий чудесный артефакт, уступающий разве что только «неразгаданным изобретениям Теслы». К сожалению, лейденская банка — это всего лишь примитивный конденсатор, причем примитивный он так же по конструкции…

102px-Capacitor_symbol_GOST.svgКонденсатор — вещь несложная, состоит из двух проводящих пластин с диэлектриком между ними. Емкость конденсатора зависит от площади этих пластин, от расстояния между ними (чем они ближе, тем емкость больше) и от диэлектрической проницаемости диэлектрика (то есть от материала между пластинами).

Вообще странно, что лейденскую банку не изобрели раньше, чем в 1745 году. Ее изобретатель делал эксперименты с электричеством, налив в банку воду и воткнув в нее штырь, который заряжался статически. Держась за штырь, он положил руку на стенку банки. Внутренним электродом конденсатора выступила жидкость в банке, а внешним — ладонь, приложенная к стеклу. Получилась замкнутая цепь через изобретателя — и он это сразу почувствовал (такое сложно не почувствовать). Я подозреваю, что лейденскую банку открывали до этого много раз, но всем казалось, что их долбануло через контакты — только один человек обратил внимание, что стекло это диэлектрик.

Однако, дальше начинаются заблуждения.
Если быстро выяснилось, что для функционирования лейденской банки достаточно два слоя фольги с обоих сторон стекла, то с емкостью было не все так ясно. Считалось, что электрическая емкость банки зависит не от площади поверхности ее стенок, а от объема. И поэтому почти до начала 20-го века строили лейденские банки многолитрового размера и для увеличения емкости соединяли их в батареи.

Уже только это является широким полем деятельности для попаданца.
Ведь достаточно сделать плоские конденсаторы, сложив в стопку листы фольги и слюды и соединив фольгу через одну. Емкость будет много больше, чем в классической лейденской банке, а вес и объем — куда как меньше. Можно брать патент, очень выгодный для 18 века.

Конденсатор хорош тем, что построить его можно в любом обществе, знающем металлы. Ведь металл можно взять любой — та же медь более чем годится. Да и диэлектрик тоже можно взять любой — от вощеной бумаги до воздуха. Хотя тут придется повозиться — чтобы диэлектрик был годен при любой влажности, не деградировал со временем и не плавился от жары. Слюда — один из лучших вариантов, диэлектрическая проницаемость у нее 7.5 (у кварца — 4, у бакелита — 4.5, у стекла — 4.7). Конечно, есть варианты с керамикой, где диэлектрическая проницаемость колеблется от 10 до 20, но это специальная керамика, типа фарфора, что недешево.
Стоит только помнить, что от качества диэлектрика зависит напряжения, которое конденсатор выдерживает до пробоя. Классическая лейденская банка хороша тем, что в ней диэлектрик — стекло, что позволяет строить очень высоковольтные банки, хоть даже и небольшой емкости.

Конденсатор очень интересно себя ведет, если к нему подключить не постоянный ток, а переменный. Постоянный ток не проходит через конденсатор, ведь изолятор между обкладками — это разрыв цепи. Но если приложить ток переменный, то он начинает попеременно заряжать обкладки и конденсатор становится проводником — точнее резистором. Он приобретает так называемое реактивное сопротивление. И сопротивление это зависит от емкости конденсатора и от частоты тока. Конденсаторы малой емкости лучше проводят высокочастотный переменный ток и наоборот.

Зачем нужен конденсатор в древности? Вопросы радио оставим для других статей. А конденсатор очень пригодится в ритуальных целях. Воспоминание о первом ударе током останется у неофита до гробовой доски. А у попаданца наверняка выработается привычка заземлять алтарь перед работой с ним…

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/lejdenskaya-banka-kondensator/feed/ 19
Гальванический элемент, ячейка Джона Дэниэля http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskij-element-yachejka-dzhona/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskij-element-yachejka-dzhona/#comments Tue, 09 Oct 2012 20:45:31 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=314 Если вы решили двигать вперед электротехнику в древнем мире, то багдадская батарея вас скоро перестанет удовлетворять.

При ее работе на медном электроде образуются пузырьки газа, которые сильно снижают ток. Вольтов столб имеет бОльшее напряжения из-за других металлов, но все равно от запузыривания не защищен. Остается одно — усовершенствовать вольтов столб и создать ячейку Джона Дэниэля…

[...]]]>
Если вы решили двигать вперед электротехнику в древнем мире, то багдадская батарея вас скоро перестанет удовлетворять.

При ее работе на медном электроде образуются пузырьки газа, которые сильно снижают ток. Вольтов столб имеет бОльшее напряжения из-за других металлов, но все равно от запузыривания не защищен. Остается одно — усовершенствовать вольтов столб и создать ячейку Джона Дэниэля…

Для ее создания, кроме того же цинка и меди, используемых в вольтовом столбе, необходима серная кислота, и поконцентрированней. Растворяя в ней цинк, получаем сульфат цинка, а растворяя медь — получаем сульфат меди. Оба вещества нам пригодятся.

Конструктивно ячейки Джона Дэниэля очень похожа на багдадскую батарею, только нам потребуются два глиняных горшка, вложеных один во второй. Особое внимание нужно уделить внутреннему горшку. Он должен быть тонкостенный и неглазурованный. Из такой глины в теплых странах делали горшки, которые охлаждали воду — через их пористые стенки испарялась вода и охлаждала содержимое. В нашем случае через эти пористые стенки будут проходить ионы, а сами сульфаты меди и цинка нет. Так мы разделяем один электролит на два — во внешнем горшке и во внутреннем.

В наружный горшок помещаем медный электрод и заливаем раствор сульфатом меди, это будет (+). Во внутренний горшок помещаем цинковый электрод и заливаем раствор сульфатом цинка, это будет (-). Можно просто вставить электроды и залить их серной кислотой — сульфаты металлов возникнут сами собой, но это уменьшит размеры электродов и свойства ячейки будут менее предсказуемы.

Все остальное делаем как в багдадской батарейке, да и применение такое же. Только здесь ток будет больше и много стабильнее, что важно для промышленного использования. Ячейка Джона Дэниэля была изобретена в 1836-м году, поэтому отрезок времени для ее внедрения очень большой, гальваническое покрытие в древнем мире может очень неплохо прокормить попадаца.

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskij-element-yachejka-dzhona/feed/ 42
Магнит и компас http://popadancev.net.s3-website-us-east-1.amazonaws.com/magnit-i-kompas/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/magnit-i-kompas/#comments Tue, 24 Jul 2012 10:27:47 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=97 Магнит человечеству известен давно. Главным источником магнитов древнего мира были холмы Магнезии в Греции, там добывали запасы магнитного железняка…

Однако, магниты из железняка были плохие. Но компас из них построить было можно. В 12-13 веке в Европе появились самые примитивные компасы — кусочек железняка плавал, положеный на пробку. Направление показывал «куда-то туда». Только в [...]]]> Магнит человечеству известен давно. Главным источником магнитов древнего мира были холмы Магнезии в Греции, там добывали запасы магнитного железняка…

Однако, магниты из железняка были плохие.  Но компас из них построить было можно. В 12-13 веке в Европе появились самые примитивные компасы — кусочек железняка плавал, положеный на пробку. Направление показывал «куда-то туда».  Только в 14 веке в догадались поставить стрелку на иглу и добавить картуш с румбами. Поэтому у Колумба компас был вполне внятный. Однако, сама магнитная стрелка была вещью крайне дорогой. Существовали специальные мастерские по их изготовлению. Технология была такой: бралась стальная стрелка и по ней нужно было проводить в одном направлении куском магнитного железняка.  Кроме того, что правильно выбрать направление, операцию натирание необходимо было проводить долго — несколько недель. Поэтому мастерская выглядела как комната, где сидят подмастерья и целыми днями двигают туда-сюда куски железняка. И все равно — результат был не ахти. Происходило это потому, что для стрелки компаса требовался магнитно-твердый материал, который долго не размагничивается. Это — углеродистая сталь, причем закаленная. Но чтобы ее хорошо намагнитить, нужно достичь насыщения магнитного поля, что методом натирания было не то, чтобы невозможно, но близко к нему.

Мы пойдем другим путем. Будем считать, что наш попаданец уже построил гальванический элемент. Тогда достаточно собрать из этих элементов батарею, причем соединять желательно параллельно — нас интересует именно ток. После чего из медной проволоки делается катушка. Диаметр катушки — чем меньше, тем плотность силовых линий будет больше. В условиях средневековья навивать больше, чем два слоя витков — смысла нет. Катушка заливается древесной смолой для изоляции и чтобы витки не замкнуло. После этого внутрь катушки ложится будущая стрелка компаса и на долю секунды подсоединяется гальваническая батарея. Процесс закончен. Стрелка компаса много сильнее намагничена, чем у конкурентов.

Метод производства следует держать в секрете, и цены на компасы не снижать, иначе конкуренты задавят.  Если же вы попали в более древние времена, где компаса не знают, то ищите мореплавателей. Они — потребители номер один, им даже в случае каботажного плавания компас на порядок полезнее сухопутных путешественников.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/magnit-i-kompas/feed/ 64
Гальваническое покрытие http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskoe-pokrytie/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskoe-pokrytie/#comments Sat, 21 Jul 2012 20:30:37 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=56 Имея гальванический элемент, можно осаждать один металл на поверхности другого. Зачем это может понадобиться в средневековье или в Древнем Риме? Ответ элементарен — можно покрыть серебряные статуэтки золотом и продать как золотые. Собственно, именно эта история произошла с Архимедом, когда царь Сиракуз Гиерон ткнул ученому свою корону на предмет определить — золотая она или позолоченая. [...]]]> Имея гальванический элемент, можно осаждать один металл на поверхности другого.
Зачем это может понадобиться в средневековье или в Древнем Риме? Ответ элементарен — можно покрыть серебряные статуэтки золотом и продать  как золотые. Собственно, именно эта история произошла с Архимедом, когда царь Сиракуз Гиерон ткнул ученому свою корону на предмет определить — золотая она или позолоченая. Что характерно, корона оказалась НЕ золотой.

Этот путь может обеспечить некоторые проблемы как с властями, так и преступными группировками (последние будут давить конкурента), поэтому подойдет не всем попаданцам.

Также можно покрывать золотом доспехи, это лучше с точки зрения закона, потому что они изначально будут продаваться как позолоченые, но естественно, прибыль будет на порядок ниже. Вобщем — выбирать вам.

Итак.
Необходима ванна с электролитом, куда помещается серебряный предмет (подсоединяется к «минусу») и золотая пластинка (подсоединяется к «плюсу»).
Электролит придется подбирать в процессе. Возможно, подойдет морская вода, но в ней слишком много примесей. Сейчас для золочения используют растворение 7.5 грамм цианистого калия на литр дистилированой воды. Но получение цианистого калия в средние века процесс нетривиальный, требует аммиака (хотя цианистый калий — вещество полезное не только с точки зрения гальваники). Во время работы электролит полезно подогреть до 30-35 градусов.

Также требуется подбирать силу тока. Если ток будет слабый — покрытие получится не сплошным, а с разрывами. Если ток будет сильный —  покрытие будет пористым и шероховатым. Сила тока в случае с гальваническими батареями будет зависеть от количества параллельно соединенных элементов.

Гальваническое покрытие — это куда экономнее, чем покрывать с помощью амальгамирования, для которого нужна еще и ртуть, и которое использовалось в то время. И помните — в древнем мире работа с электричеством будет квалифицироваться как колдовство со всем вытекающими последствиями!

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskoe-pokrytie/feed/ 8
Гальванический элемент. Вольтов столб. http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskij-element-voltov-stol/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskij-element-voltov-stol/#comments Sat, 21 Jul 2012 20:28:26 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=54 Если вы смогли получить цинк — то можно сделать гальванический элемент не на разности металлов «железо-медь», а на «цинк-медь». Так как в электрохимическом ряду элементов цинк стоит левее железа, то напряжение эта батарея будет давать больше — порядка 1.1 вольта.

Проще всего сделать именно вольтов столб, который состоит из медных и цинковых кружков, между которыми [...]]]> Если вы смогли получить цинк — то можно сделать гальванический элемент не на разности металлов «железо-медь», а на «цинк-медь». Так как в  электрохимическом ряду элементов цинк стоит левее железа, то напряжение эта батарея будет давать больше — порядка 1.1 вольта.

Проще всего сделать именно вольтов столб, который состоит из медных и цинковых кружков, между которыми попарно проложено сукно,  пропитанное кислотой. Несмотря на свою простоту, это более мощный источник тока, чем багдадская батарея.

В 1803 году, соединив 4200 медных и цинковых кругов, удалось получить 2500 вольт и зажечь электрическую дугу. Если повторить это ночью в  полутемном храме — то можно организовывать секту, что сулит попаданцу много полезного.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/galvanicheskij-element-voltov-stol/feed/ 89