Химическая промышленность — Попаданцев.нет http://popadancev.net.s3-website-us-east-1.amazonaws.com база данных в помощь начинающему попаданцу Sat, 05 Mar 2022 11:27:13 +0000 ru-RU hourly 1 https://wordpress.org/?v=6.0.3 Коктейль Молотова http://popadancev.net.s3-website-us-east-1.amazonaws.com/koktejl-molotova/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/koktejl-molotova/#comments Sat, 05 Mar 2022 11:27:13 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9287 Вообще-то название «Коктейль молотова» — неправильное. Финны в 1939-м назвали его «коктейль ДЛЯ Молотова», но сути это не меняет. В окопах его чаще называли просто «зажигательная смесь», но в названии статьи куда красивее именно «коктейль Молотова».Необходимость этой статьи спорная — потому что для тех, кому бы хорошо знать рецепт, статья будет заблочена. А те, для [...]]]> Вообще-то название «Коктейль молотова» — неправильное. Финны в 1939-м назвали его «коктейль ДЛЯ Молотова», но сути это не меняет. В окопах его чаще называли просто «зажигательная смесь», но в названии статьи куда красивее именно «коктейль Молотова».
Необходимость этой статьи спорная — потому что для тех, кому бы хорошо знать рецепт, статья будет заблочена. А те, для которых статья будет видна — те сами могут писать статьи, основанные на практике.
Тем не менее — поехали!…


Необходимость этой статьи для попаданца спорна еще и потому, что идея зажигательной смеси абсолютно не нова. Первая исторически достоверная запись подобного это «греческий огонь». Состав его неизвестен и для попаданца не имеет значения.  В Первую Мировую зажигательные снаряды в стеклянной посуде сбрасывали с аэроплана. Подобные штуки делали во все времена, делали из того, что под рукой и называли на злобу дня.

Коктейль Молотова это многокомпонентная смесь:
1. Горючее вещество. В наших условиях — углеводород.
2. Загуститель, чтобы горючее вещество быстро не стекало, а желательно, наоборот прилипло.
3. Добавки для повышения температуры горения.
4. Добавки для самовоспламенения.

Сразу скажу про четвертую добавку.
В гаражных условиях сделать самовоспламеняющуюся смесь это где-то между «невозможно» и «смертельно для производителя».
Во Вторую Мировую делали немного проще — приматывали к бутылке негаснущие штормовые спички, которыми чиркали перед броском. Необходимость такого вызвана тем, что горящий фитиль очень хорошо виден и бросать бутылку в темное время суток очень небезопасно.
В промышленных условиях Второй Мировой для самовоспламенения выпускались тонкостенные стеклянные капсулы со смесью из серной кислоты, бертолетовой соли и сахарной пудры.

Итак, простейший рецепт.
Необходимо взять бутылки 0.5 — 0.7 литра, желательно тонкостенные. Поэтому бутылки из-под шампанского лучше не брать. Отлично подходят водочные бутылки советского образца, современные бутылки из-под пива хуже, но они много доступнее.
Потом нужно сделать смесь из 3/4 бензина и 1/4 машинного масла и разлить по бутылкам, ни каким образом не наливая под горлышко, а только от половины до двух третей. Можно даже только на треть. Дело в том, что в бутылке должны скопиться пары бензина, именно они вспыхивают.
Следующий этап — фитиль, это 20-50 сантиметровая полоса ткани шириной сантиметров 10 и при этом ткани НЕ синтетической, лучше всего чистый хлопок. Фитиль обмачивают бензином и запихивают внутрь. Должен ли конец макаться в жидкость — об
том ведутся споры. Если ткань будет синтетическая, она плохо впитывает влагу, и очень быстро высыхает.
Теперь нужен еще кусочек сухой ткани, чтобы заткнуть бутылку. Идеально подходит женский тампон. Сверху желательно замотать скотчем. Внешнюю поверхность бутылки хорошо обтереть спиртом, чтобы при поджигании не вспыхнула в руках.
Коктейль молотова имеет срок годности, уже через час или два эффективность упадет, а через сутки желательно это всё перепаковать.

Рецепт поэффективнее: 100 мл ацетона, в котором растворяют пенопласт до получения густой сиропоподобной смеси. Разводится бензином в соотношении 1:1. Это так называемый «напалм». Так называемый потому что слог «наПАЛМ» говорит о присутствии пальмового масла, кроме того там нафтенат алюминия и много еще чего интересного.

Еще очень интересный рецепт это взять хозяйственное мыло (именно хозяйственное!), натереть на грубой терке и растворить в бензине или солярке. Растворяется оно долго, поэтому для ускорения даже применяют подогрев смеси на водяной бане.

Вообще, рецептов существует гора.

Вот парочку сайтов с рецептами на украинском языке: zaxid.net и barout.media

Вот рецепт от официального канала ЗСУ:

Вот результат применения в городских условиях, в данном случае на Майдане:

Вот попытка применения во время войны с Россией:

p.s. Если у вас заблокировали поиск по словам «коктейль Молотова», ищите по поисковому запросу «Бандера-смузи».

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/koktejl-molotova/feed/ 218
Натрий и калий http://popadancev.net.s3-website-us-east-1.amazonaws.com/natrij-i-kalij/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/natrij-i-kalij/#comments Mon, 21 Feb 2022 14:01:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9282 Натрий и калий были открыты в самом начале XIX в., когда из смог выделить в свободном состоянии Гемфри Деви при электролизе растворов едких щелочей с ртутным катодом. Электролиз, но уже расплавов хлоридов, является методом их получения и в наше время. Однако для попаданца больший интерес представляет возможность получения щелочных металлов термохимическим методом, как они [...]]]> Натрий и калий были открыты в самом начале XIX в., когда из смог выделить в свободном состоянии Гемфри Деви при электролизе растворов едких щелочей с ртутным катодом. Электролиз, но уже расплавов хлоридов, является методом их получения и в наше время.
Однако для попаданца больший интерес представляет возможность получения щелочных металлов термохимическим методом, как они и производились на протяжении почти всего XIX века.

Образование натрия при накаливании соды с углем или железом наблюдали Гей-Люссак, Тенард и многие другие, но основной вклад в развитие технологии производства натрия внес Сент Клер Девиль, которому натрий был необходим для получения алюминия.
По методу Девиля смесь 30 кг соды, 13 кг угля и 5 кг мела помещалась в трубу из железа (примерно 120 на 15 см со стенками в 12-15 ми) и нагревалась в печи до белого каления
Na2CO3 + 2C = 2Na + 3CO

При этом происходило восстановление натрия, который испарялся (температура кипения 882 градуса), конденсировался в специальном железном холодильнике, и стекал в подставленный сосуд с маслом или нефтью для зашиты от действия воздуха.

Перегонка длилась несколько часов, после чего остаток из реторты быстро удаляли и загружали новую порцию смеси. Из одной загрузки получалось около 5 кг натрия.
Аналогично получался и калий из поташа, но при этом процесс осложнялся взаимодействием калия с CO, при котором образовывались K2C2 и K6C6O6.
Метод Девиля был далек от совершенства, выход натрия не превышал 40%, железные реторты очень быстро прогорали, и расход на их замену составлял до половины стоимости производимого натрия (на 1887 г около 11 шиллингов за килограмм). Тем не менее, стоимость получаемого с помощью натрия алюминия сразу же уменьшилась более чем в 20 раз.
Еще более совершенный метод разработал Кастнер, тоже занимавшийся проблемой получения алюминия. По его методу едкий натр смешивался с карбидом железа FeC2 (который, в свою очередь, получался прокаливанием железной руды со смолой или угольным порошком), и нагревался в чугунном тигле, снабженном крышкой и газоотводной трубкой.
4NaOH + FeC2 = 2Na + Na2CO3 + Fe + 2H2 + CO
При этом требовалась меньшая температура, не более 1000 градусов, поэтому реакцию проводили в дешевых чугунных тиглях, а утилизация натрия, с учетом образующегося карбоната, была практически полной. Стоимость производимого по этому способу натрия получалась около 2 шиллингов за килограмм; производительность печи с тремя тиглями составляла 45 кг натрия в день.
Но метод Кастнера не получил большого распространения, так как тем же Кастнером вскоре был разработан первый практически применимый метод электролитического восстановления.

Самое очевидное для пораданца применение натрия и калия состоит в металлотермическом восстановлении алюминия, магния и других металлов, которые весьма ценны как легирующие добавки и получение которых будет оправданно даже таким относительно дорогим способом. Например, для модифицирования чугуна нужно лишь 1-5 кг магния на тонну, а для раскисления тигельной стали всего 150-500 г алюминия на тонну. Свойства медных сплавов — бронз и латуней — улучшаются при добавках уже 1-2% алюминия, 5-10% достаточно для получения алюминиевой бронзы без других легирующих элементов.

Другая весьма полезная область — получение перекисей. Если сжигать натрий на воздухе, получается смесь оксида и пероксида (20-30%), которая при дальнейшем накаливании до 300-400 градусов поглощает кислород и превращается в чистый пероксид.
4Na + O2 = 2Na2O
2Na2O + O2 = Na2O2
Калий же сразу дает супероксид
K + O2 = KO2
В самом простом варианте натрий сжигался на железной сковороде, но продукт получался с примесями железа, что недопустимо для некоторых целей. Лучший способ состоит в распылении жидкого металла струей воздуха (предварительно очищенного от воды и углекислого газа пропусканием через негашеную известь) в металлической камере достаточного размера, при этом частицы получающихся пероксидов успевают охладиться до падения на дно и не вызывают разъедания железа.

Перекиси натрия и калия при растворении в воде дают щелочной раствор перекиси водорода, пригодный для беления.
Na2O2 + 2H2O = 2NaOH + H2O2
Саму перекись водорода тоже несложно получить из пероксида натрия (не содержащего примесей железа) действием разбавленной кислоты.
Однако самое заманчивое для попаданца применение пероксидов натрия и калия — регегерация воздуха в дыхательных аппаратах или подводных лодках.

Таким образом, и натрий, и калий вполне могут быть получены практически в любых условиях, лимитирующим фактором является только доступность железа. Польза этих металлов для попаданца тоже не вызывает сомнений

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/natrij-i-kalij/feed/ 22
Селитра и селитрянницы -2: Интенсивная нитрификация http://popadancev.net.s3-website-us-east-1.amazonaws.com/selitra-i-selitryannicy-2-intensivnaya-nitrifikaciya/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/selitra-i-selitryannicy-2-intensivnaya-nitrifikaciya/#comments Wed, 09 Feb 2022 21:59:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9273 Производство селитры — крайне волнующий попаданца вопрос. Однако классические селитрянницы имеют слишком низкую производительность, а извлечение получившейся в них селитры очень трудозатратно. Но, обладая современными знаниями, попаданец может многократно увеличить производительность селитрянниц и в значительной мере удовлетворить все потребности в нитратах. В качестве хорошей опорной точки стоит использовать уже упоминавшиеся здесь работы Мюнца и [...]]]> Производство селитры — крайне волнующий попаданца вопрос. Однако классические селитрянницы имеют слишком низкую производительность, а извлечение получившейся в них селитры очень трудозатратно. Но, обладая современными знаниями, попаданец может многократно увеличить производительность селитрянниц и в значительной мере удовлетворить все потребности в нитратах.
В качестве хорошей опорной точки стоит использовать уже упоминавшиеся здесь работы Мюнца и Лайне, которые в начале XX в. разработали метод интенсивной нитрификации и изложили его в двух статьях (Compt. rend., 1905, 141, 861 и 1906, 142, 1239), перевод которых приводится ниже.

Исследования по интенсивной нитрификации. Сообщение от А. МЮНЦА и Э. ЛАЙНЕ.
С того уже давнего времени, когда один из нас вместе с Т. Шлезингом показал, что естественная нитрификация есть результат действия микробов, многочисленные работы пролили свет на многие моменты этого явления. В первую очередь следует привести работы Виноградского, который выделил и культивировал в чистотой форме организмы, выполняющие нитрификацию, и установил, что, в отличие от своих сородичей, они могут расти в средах, свободных от органического вещества. С тех пор исследования различных ученых, в частности Варингтона, Омельянского, Буланже и Массоль уточнили условия. в которых действуют нитрифицирующие ферменты. Их исследования проводились безукоризненным научным методом, на чистых культурах и в химически определенных средах.
Несколько абстрактная цель, которую ставили перед собой эти ученые, требовала этой строгости в рабочем режиме. Но при естественной нитрификации условия более сложны, когда организмы, ее производящие, вступают в противоречие с множеством других микробов, кишащих в почве, существенно изменчивой среде, основном очаге нитрификации. Мы возобновили изучение нитрификации, поставив цель добиться интенсивной нитрификации, т. е. получения больших количеств нитратов, путем создания нитрификаторов с быстрым действием и высокими выходами.
Это делалось не с точки зрения сельскохозяйственных приложений, которыми мы занимаемся; на самом деле не имеет большого значения, чтобы азот был дан растениям в нитрифицированной форме; он может быть предоставлен им в любой другой форме, так как почва, в которую вносятся азотистые вещества, сама изобилует бактериями, превращающих их в нитраты. Мы прежде всего рассмотрели производство селитры с точки зрения ее применения в производстве военного снаряжения.
Основным средством современной войны является использование взрывчатых веществ, и все они происходят из селитры и накопленной в ней энергии, которую взрывчатка реализует, внезапно выделяя эту энергию. Чудовищные эффекты военных машин являются продуктом труда, накопленного крошечными организмами в недрах земли.
В прошлом селитра поступала в основном из Индии; но, во время войн Революции и Первой Империи, когда Франция была подвергнута морской блокаде, приходилось пользоваться местными ресурсами и уже устаревшее искусство производства селитры вновь сильно развилось, особенно благодаря трудам выдающихся ученых. Производства селитры хватило сначала для нужд обороны, а потом и нападения. Примерно в 1840 году открытие огромных месторождений нитрата натрия в Перу лишило местное производство всей важности и искусство производства селитры исчезло. Селитра же из Перу до сих пор используется во всем мире.
Но здесь мы ставим проблему, которая, как нам кажется, имеет большое значение: это проблема возможности снабжения. Даже не принимая во внимание истощение месторождений, мы можем предвидеть случай войны, в которой Франция, как в 1793 г., так и на протяжении всего существования первой империи, прервет свои морские коммуникации. Иссякнет источник поставок селитры и, следовательно, военного снаряжения. Тогда придется использовать местные запасы селитры, как это делали наши предки. Но хватит ли сегодня тех количеств, которые были достаточны в конце восемнадцатого и начале девятнадцатого века? Смогли бы ли подвалы и конюшни, и селитрянницы, устроенные по старым методаи, обеспечить достаточное количество селитры для современных нужд сухопутных и морских армий? Можно смело ответить нет, это было бы далеко не так.
Расход боеприпасов в современной войне несравненно, может быть, в пятьдесят или сто раз больше, чем сто лет назад; мы имели недавний пример этого перед глазами, в перипетиях русско-японской войны, где это потребление было даже расточительным, но расточительным, вероятно, необходимым, по крайней мере неизбежным. Во время войны не должны вмешиваться никакие соображения экономии; запасы поэтому должны быть, так сказать, неограниченными. Таким образом, средств, использовавшихся в прошлом для производства селитры, было бы явно недостаточно, но следует надеяться, что, воспользовавшись недавно приобретенными представлениями о процессе нитрификации, мы сможем создать селитрянницы с гораздо более быстрым действием и с намного более высокой производительностью.
Именно к решению этой проблемы мы приложили свои усилия, и мы сообщаем здесь первые результаты, которые получили. Селитру получают в природе путем окисления самых разнообразных азотистых материалов, особенно остатков животной и растительной жизни. Но азот сначала должен быть превращен в аммиачную комбинацию. Мы начали с изучения нитрификации аммиачных солей, которые можно найти в значительных количествах на местном рынке, получаемых из побочных продуктов производства газа и кокса, а также при перегонке животных отходов.
Эти соли также могут быть приготовлены изо всех азотсодержащих материалов, и, при необходимости, их количество может быть увеличено почти неограниченным. Позже мы рассмотрим, также с точки зрения интенсивной нитрификации, непосредственное превращение различных азотистых материалов без предварительного изготовления аммиачных солей.
Сначала мы рассмотрели, до какой степени можно сделать нитрификацию более интенсивной, воздействуя на растворы, стекающие по твердым и инертным носителям при соприкосновении с воздухом.
Угольный шлак успешно использовался в очистных сооружениях, господа Буланже и Массоль подчеркнули его ускоряющую роль. При поиске наиболее выгодных носителей мы обнаружили, что гранулированный животный уголь обладает гораздо большей способностью, чем шлак, помогать окислению, особенно при работе с относительно концентрированными растворами 7,5 г сульфата аммония на литр. Таким образом мы поливали окисляющие поля; одно было сделано из животного угля, другое из шлака, и мы обнаружили, что при объеме 10 дм3 животный уголь может производить в день количество селитры, выраженное в нитрате калия, равное 8,10 г, в то время как шлак давал только 4,54 г.
Имея субстрат, значительно превосходящий те, которые использовались до сих пор, мы искали наиболее благоприятные условия для производства большой массы селитры, работая при температуре, близкой к 30⁰ С. Мы уже знали, что не можем бесконечно увеличивать концентрацию аммиачных растворов. С целью получения наибольшего количества нитратов мы варьировали эту концентрацию. Максимальную суточную производительность нам давал раствор 7,5 г сульфата аммиака на литр, который производил регулярно 8.1 г селитры, в то время как с 10 г на литр мы получили только 6, 22 г. (¹Все наши результаты выражены в нитрате калия).
Поэтому мы остановились на нитрифицируемом растворе 7,5 г на литр, поливая им уголь, предварительно засеянный нитрифицирующими организмами, количествами, обеспечивающими почти полную нитрификацию аммиачного азота, не прибегая, однако, к получению полной нитрификации, которая бы заставили бы замедлить ход операции и на столько же уменьшили бы ежедневное производство селитры, что является основной целью наших испытаний. Таким образом, нам удалось увеличить объем поливочных растворов до 960 см3 в сутки на 10 дм3 угля.
Этот результат показывает, что можно приготовить при относительном небольшом объеме животного угля значительное количество селитры.
Действительно, исходя из этих данных, если разместить на площади в 1 га слой зерненого животного угля высотой 2 м, имеющий местами отверстия, обеспечивающие аэрацию, кроме того, закрытый и защищенный, с возможностью поддержания температуры жаркой теплицы, можно было бы путем методического полива раствором сульфата аммония в количестве 7,5 г на литр получить 16000 кг селитры в день, то есть в год от 5 до 6 миллионов килограммов. Таким образом, видно, что на относительно ограниченной поверхности можно производить огромное количество селитры из солей аммония.
Однако эта интенсивная нитрификация, основанная на использовании аммиачных растворов, имеет серьезный недостаток: это разбавленное состояние, в котором находится образующаяся селитра, и которое требует испарения больших масс воды.
В самом деле, нитрифицированная жидкость содержит только 8—9 г селитры на литр, и такая степень разбавления лишает большую часть ценности этого способа нитрификации, хотя и столь быстрого.
Целесообразно выяснить, нельзя ли значительно обогатить эти жидкости нитралами, чтобы соответственно снизить затраты на концентрирование. Мы уже говорили, что начальная доля аммиачной соли не может быть увеличена без замедления нитрифицирующей активности; но мы знаем, из исследований Буланже и Массоля, что жидкости, уже богатые селитрой, могут продолжать нитрифицироваться при добавлении к ним солей аммония.
Мы думали, что вместо того, чтобы выпаривать раствор, содержащий только около 1 кг на 100 литров, мы могли бы ввести в него количество аммиачной соли, идентичное тому, которое было в нем изначально; пропустить его над окислительным полем один или несколько раз, каждый раз добавляя аммиачную соль, до предела, при котором доля образовавшейся селитры препятствует нитрификации. Наши исследования по этому вопросу продолжаются.
Действуя, как мы только что сказали, на растворах аммиачных солей, мы в любом случае могли бы производить большие количества селитры. Но нам показалось интереснее изучить интенсивную нитрификацию в почве, в земляных селитрянницах, аналогичных тем, которые использовались в прошлом, но с гораздо большей активностью.
Первый момент, который мы попытались прояснить, касается максимального количества, которое может быть нитрифицировано в определенное время, землей в наиболее благоприятном состоянии влажности, которую легко оценить по способность рассыпаться. Сульфат аммония вводился в селитрянницы в достаточном количестве, чтобы они могли проявить все свои окислительные свойства, избегая доз, способных вызвать замедление нитрификации.
Влажность поддерживалась постоянной, а земля подвергалась колебаниям температуры закрытого помещения от 15⁰ до 22°; землю помещали в ящики и время от времени перемешивали железным инструментом, чтобы имитировать вспашку. Количество селитры, образующейся в то же время, значительно варьировалось от одной земли к другой. Приведем некоторые полученные цифры: смесь равных частей суглинка и компоста, с добавлением 2 на 1000 сернокислого аммония, дала за сутки на килограмм земли 0.350 г селитры, или 350 г на кубический метр. Таким образом, с 1 га площади селитрянниц при толщине слоя 50 см будет производиться 1750 кг селитры в день, или около 650 тонн в год. Хорошо подготовленный компост, полученный из смеси листьев, навоза и земли, с добавлением 1 на 1000 сульфата аммония, произвел за 24 часа 0.63 г селитры на 1 кг, то есть 3250 кг на 1 га при слое 50 см толщиной, или 1200 тонн в год,
Вероятно, мы еще не достигли максимального предела суточного производства, но уже можем видеть, что на относительно ограниченных поверхностях можно получать огромные количества селитры, несравненно превосходящие те, которые производились теми селитрянницами, которые устанавливали раньше.
Достигнув быструю нитрификацию, мы искали, до какого предела можно довести обогащение селитрой. С этой целью мы постепенно добавляли сульфат аммония. Мы заметили, что образование селитры продолжается, несмотря на ее накопление в почвах, и что, таким образом, содержание селитры может повышаться постепенно; в некоторых наших опытных почвах это накопление было таково, что земля из легкой и рыхлой становилась пастообразной и пластичной, как плотная глина. В других землях оно продолжалось до полного исчезновения известняка, а затем прекращалось и возобновлялось, как только известняк добавлялся.
Мы еще не достигли предела, при котором накопление селитры препятствует или даже препятствует нитрификации; в том месте, где мы находимся в наших исследованиях, почвы различных видов: компост, суглинок, почва, смешанная с компостом, достигли содержания селитры от 27 до 33 г на килограмм почвы; это настоящие нитроземы, аналогичные тем, что встречаются в тропических регионах, то есть селитросодержащие материалы необычайного богатства.
Интересно было определить степень насыщения жидкостей, пропитывающих эти почвы: в компосте, содержащем почти 50% влажности, обнаруживается раствор селитры 55 г на литр; в смеси горшечной почвы и легкой почвы при 36% влажности степень концентрации составляет 18 г на 1 л, в рыхлой почве при 18% влажности 157 г на л, и в другой аналогичной земле с 15,5% влажности — 143г селитры на литр. При методическом выщелачивании земель, содержащих селитру в виде такого концентрированного раствора, получаются жидкости, настолько насыщенные селитрой, что затраты на выпаривание становятся незначительными.
Эти первые результаты показывают, что, начиная с сульфата аммиака, можно получить нитраты гораздо быстрее и с более интенсивной производительностью, чем в селитрянницах, использовавшихся ранее для производства военных боеприпасов. Они могут обеспечить нас в возможности производства селитры, необходимой для национальной обороны, в случае прекращения поставок из-за границы.


БИОЛОГИЧЕСКАЯ ХИМИЯ. Использование торфа для интенсивного производства нитратов. Сообщение от А. МЮНЦА и Э. ЛАЙНЕ.
Установив, что почвы, богатые органическим веществом, особенно пригодны для интенсивного образования нитратов, мы попытались выяснить, образует ли торф, остаток разложения растений в воде и состоящий почти исключительно из углеродистого вещества, благоприятную почву. активности нитрифицирующих микробов.
Для этой цели были испытаны торфы в различной степени разложения: моховой торф из Голландии, используемый в качестве подстилки, губчатый поверхностный торф или плотный донный торф, взятый с торфяников Йонны и Соммы. Измельченный, смешанный с известняком и засеянный многолетними организмами, затем дополненный сернокислым аммиаком, торф оказался очагом необычайно активной нитрификации, намного превышающей то, что давали материалы, которыми мы пользовались до сих пор.
Действительно, в наших предыдущих исследованиях (2) мы получили максимальную интенсивность нитрификации, периодически заливая раствор аммиачной соли на гранулированный животный уголь. Объем в 1 кубический метр давал нам 0,80% нитратов в сутки, и, следовательно, гектар поверхности селитрчнницы мог позволить получать 5800 тонн селитры в год.
Эти количества, и без того очень высокие, были значительно увеличены заменой животного угля торфом. Действительно, доля нитратов, образующихся за 24 часа, была 6 кг 550 г на кубический метр, т.е. в 8 раз выше, что привело бы к выходу с одного гектара селитрянницы примерно 48000 тонн селитры в год.
Мы привыкли рассматривать нитрификацию как очень медленное явление. Используя торфяную подложку, нам удалось придать ему такую ​​быстроту, что ее можно сравнить с бурным спиртовым брожением. По Буссенго (1) старые селитрянницы давали за два года 5 сырой селитры с кубометра — это меньше, чем дает нам торф за 24 часа. Таким образом, нитрифицирующая активность, которую мы получаем, более чем в 1000 раз выше, чем в старых селитрянницах. Все типы торфа показали себя очень активными, но легкие и губчатые, менее разложившиеся, тем не менее обладают некоторым преимуществом, вероятно, потому, что они допускают более активную циркуляцию воздуха, движение жидкостей в них происходит более планомерным образом, и бактерии получают возможность прикрепиться к огромной нитчатой поверхности. Организмы остаются прикрепленными к этой торфяной опоре и функционируют бесконечно долго, если мы продолжаем их кормить. Нитрифицированная жидкость выходит на дно прозрачной, не увлекая бактерий.
Теперь у нас есть возможность провести на относительно ограниченной установке и в очень короткое время превращение огромных количеств аммиачных солей в нитраты. Но при эксплуатации как мы сказали, выливая раствор сульфата аммония на торф, служащий субстратом для нитрифицирующих организмов, мы вынуждены, чтобы не мешать функционированию последних, пользоваться довольно слабым аммиачным раствором, 7,5 г сульфата аммония на литр, что дает раствор около 1 части нитратов на 100 частей воды, что слишком мало для экономного концентрирования.
Наши исследования показали, что нитрификация может продолжаться в сильно насыщенных нитратами растворах, содержащих до 22 частей в 100 частях раствора. К уже нитрифицированным растворам добавляли аммиачную соль и несколько раз пропускали через окислительный слой, постепенно обогащая жидкость нитратом. Для этой цели мы установили ряд торфяных селитрянниц, через которые последовательно проходит одна и та же жидкость, которая между каждым переходом от одной селитрянницы к другой дополнялась сернокислым аммиаком. Жидкость постепенно насыщается нитратами, а не аммиаком, доза которого никогда не становится достаточно высокой, чтобы препятствовать функционированию нитрифицирующих организмов. Таким образом, мы получили следующие результаты (в граммах селитры на литр): 1-й проход 8.2 г/л 2-й проход 17.4 г/л 3-й проход 25.4 4-й проход 32.9 5-й проход 41.7
Это еще не возможный предел обогащения, который, однако, уже таков, что отвечает экономической добыче. Поэтому с помощью этого процесса можно получать не только быструю нитрификацию, но и концентрированные растворы нитратов. Таким образом, использование торфа в качестве подложки для нитрифицирующих организмов (1) решает проблему интенсивного производства селитры.
Активность нитрификации, которая является биологическим явлением, сильно зависит от температуры. В условиях, в которых мы работали, оптимальная температура была близка к 30° и важно не отклоняться от нее слишком далеко. Вопросом о топливе, необходимом для поддержания тепла селитрянниц, а также о том, что придется использовать для выпаривания жидкостей, не следует пренебрегать. Нет более экономичного топлива, чем торф, который нужно только добывать открытым способом и сушить на воздухе, чтобы его можно было использовать. Размещая селитрянницы на самих торфяных болотах, мы получили бы, таким образом, одновременно и материалы для них, и топливо. Это два основных элемента интенсивной нитрификации; но самым важным элементом само азотсодержащее вещество, сырье для образования нитратов. Мы задались вопросом, не может ли торф также обеспечить это нитрифицируемое вещество. Торф содержит большое количество азота, до 2 или 3 частей на 100 частей его сухого веса. Но в той форме, в которой находится этот азот, т. е. в состоянии гуминового соединения, он инертен, поэтому нельзя непосредственно нитрифицировать азот, содержащийся в торфе в таком изобилии. Но можно ли его удалить в виде аммиачной соли, которую затем использовать как нитрифицируемое вещество?
Это представляет большой интерес для преследуемой нами цели. Если бы ответ на этот вопрос был утвердительным, то торф давал бы все элементы для производства нитратов. Идея использования торфа в химической промышленности уже стара; он почти не исподьзуется во Франции, но другие страны, в частности Германия, предприняли успешные усилия в этом направлении. Промышленники используют торф для получения кокса, смолы, уксусной кислоты, метилового спирта и др., а также более или менее светящего горючего газа. Занимаясь исключительно получением азотистых продуктов, предназначенных служить сырьем для производства селитры, мы с удивлением заметили, что при перегонке лишь небольшая часть азота торфа была обнаружена в состоянии аммиачной воды. Действительно, в работах (1), посвященных технике перегонки торфа, мы находим, что получаемые аммиачные воды содержат едва ли 1/10 азота, имеющегося в торфе. Со своей стороны, перегоняя компактный торф с Соммы, мы получили следующие результаты: Содержание азота в торфе 2.03% В аммиачной воде получено 0,393%
Понятно, что при этих низких выходах извлечение в виде аммиачных солей азота из торфа до сих пор считалось лишь второстепенным. С той точки зрения, с которой мы рассмотрели вопрос, заставивший нас приписать главенствующее значение азоту, мы искали причины этой потери и способы избежать ее.
Мы обнаружили, что при сухой перегонке кокс, составляющий примерно 1/3 массы используемого торфа, сохраняет большие количества азота.
Фактически мы обнаружили, что в среднем в коксах, полученных из Сомского торфа 1,28% азота. Это одна из причин низкого выхода аммиака. Вместо того, чтобы производить сухую перегонку, мы проводили ее в потоке перегретого пара. Тогда результаты были совершенно иными, и почти весь азот в торфе был получен в аммиачном состоянии, как это показано ниже:
Содержание азота в торфе 2,03% В аммиачной воде получилось 1.790 — 1.612%
Для получения этих выходов уголь в коксе должен быть полностью окислен паром; таким образом получается смесь окиси углерода и водорода, называемая в промышленности водяным газом. Таким образом, эта операция приводит к получению большей части аммиака, из соответствующего азоту торфа. Она также дает смолы и другие пирогенные продукты перегонки, кокс же превращается в топливный газ. Для этого требуется больше тепла, но его может обеспечить сам торф и образующиеся газы. Как бы то ни было, здесь мы имеем возможность извлекать из торфа в виде полезного аммиака содержащийся в нем инертный азот.
Поэтому торф представляется нам особенно подходящим для интенсивного производства нитратов, так как представляет чрезвычайно благоприятный субстратдля нитрифицирующих организмов, дает тепло, необходимое для поддержания температуры и выпаривания растворов, и обеспечивает аммиак, сырье для производства нитратов. Торфяные болота представляют собой непродуктивные поверхности, чаще всего неиспользуемые или которые могут быть превращены в сельскохозяйственные угодья только путем сложных и дорогостоящих работ. Можно сказать, что в настоящее время мы извлекаем из них мало пользы и что они являются причиной бедности занимаемых ими районов. Из предыдущего видно, что они представляют собой важные запасы азотистых веществ. Кубометр торфа дает при высыхании 350 кг сухого вещества, в котором содержится 2% азота. При мощности в 1 метр 1 га торфяника может содержаться 70 000 кг азота, иммобилизованного в инертном состоянии; эта цифра часто значительно выше, так как некоторые торфяники имеют мощность 5—6 м. Если учесть площадь торфяных болот, существующих только во Франции, то количество органического азота, которое мы могли бы извлечь из этого вещества, в настоящее время не имеющего ценности, и превратить в нитраты методом, который мы только что разработали, составляет миллионы тонн. Торфяные болота относительно неразвиты, поэтому здесь имеются запасы азота, которые могли бы поставлять нитраты в таком количестве, которое можно сравнить с запасами огромных месторождений Чили.
В других странах, особенно на Севере, торфяники имеют гораздо большее развитие. Таким образом, мы видим возможность производства селитры практически в неограниченных количествах, и нам больше не нужно беспокоиться о препятствиях, которые могут быть поставлены для ввоза селитры из Южной Америки, или об истощении ее месторождений.

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/selitra-i-selitryannicy-2-intensivnaya-nitrifikaciya/feed/ 24
Мочевая кислота http://popadancev.net.s3-website-us-east-1.amazonaws.com/mochevaya-kislota/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/mochevaya-kislota/#comments Fri, 21 Jan 2022 18:40:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9257 Попаданец может получать полезные продукты из самых неприглядных субстанций, например, селитру из навоза или цианистый калий из рогов и копыт. Тема этой заметки — мочевая кислота.

Мочевая кислота является нормальным продуктом обмена веществ многих животных, в том числе человека, выделяющего около 0.6 г мочевой кислоты в день. Еще больше мочевой кислоты в виде аммонийной [...]]]> Попаданец может получать полезные продукты из самых неприглядных субстанций, например, селитру из навоза или цианистый калий из рогов и копыт.
Тема этой заметки — мочевая кислота.

Мочевая кислота является нормальным продуктом обмена веществ многих животных, в том числе человека, выделяющего около 0.6 г мочевой кислоты в день. Еще больше мочевой кислоты в виде аммонийной соли содержится в помете птиц (до 15%, а в гуано около 25%) и рептилий (до 90% мочевой кислоты).

Самый доступный источник — куриный помет. Для выделения чистой мочевой кислоты достаточно залить сухой помет слабым щелочным раствором (лучше всего по ~0.5% гидроксидов натрия и кальция), покипятить, отфильтровать горячий раствор и подкислить фильтрат кислотой. При охлажлении выпадет плохо растворимая мочевая кислота, 20-30 г из килограмма «сырья».
Если мочевую кислоту окислить азотной кислотой (на 1 часть мочевой кислоты 4 части азотной кислоты) или бертолетовой солью, то получится аллоксан, который под действием аммиака превращается в очень яркий краситель мурексид.

Муроксид пригоден для крашения шерсти в красный цвет, похожий на пурпур, для этого лучше всего пропитать ткань раствором аллоксана и подвергнуть действию паров аммиака. Сразу после открытия красяших свойств мурексида в 1856 г. этот краситель стал очень популярным, и его производство достигало ~500 кг в неделю (на что расходовалось несколько тонн южноамериканского гуано и азотной кислоты).
Но широкое применение мурексида длилось достаточно недолго, так как вскоре появились анилиновые красители, а также из-за неустойчивости окрашенных мурексидом тканей к сернистому газу, которого хватало в атмосфере городов, отапливавшихся углем и освещавшихся каменноугольным газом. Зато, в отличие от анилиновых красок, муроксид очень стоек к солнцу и кипячению в воде, почти как настоящий пурпур, за который его поначалу принимали.
Аллоксан превращается в мурексид даже при контакте с белками, отщепляя от последних амииак, поэтому растворы аллоксана при попадании на кожу дают красные пятна. Эта особенность используется в некоторых видах губной помады. Примо Леви в своей замечательной книге «Периодическая система» писал о том, как работал на фирме по производству помады, и по заданию владельца фирмы пытался получить аллоксан из куриного помета, но почему-то это ему не удалось.
Другой полезный продукт, который можно получать из мочевой кислоты — это кофеин. Для этого мочевую кислоту нужно нагревать в смеси с формамидом, а затем обработать продукт (ксантин) диметилсульфатом и щелочью для введения метильных групп.

И формамид, образующийся при нагревании муравьнокислого аммония, и диметилсульфат, легко получающийся из олеума и метилового спирта, могут быть доступны практически везде.
Конечно, в XXI в. разработка метода получения кофеина из куриного помета могла бы вполне претендовать на Игнобелевскую премию (как ванилин из коровьего навоза), но тем не менее еще 50-70 лет назад кофеин в значительных количествах для фармацевтических нужд имено так и производили, правда, несколько иным способом.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/mochevaya-kislota/feed/ 9
Бензойная кислота http://popadancev.net.s3-website-us-east-1.amazonaws.com/benzojnaya-kislota/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/benzojnaya-kislota/#comments Thu, 13 Jan 2022 14:31:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9254 Бензойная кислота C6H5CO2H — весьма полезное вещество, но для ее получения требуется сырье, дефицитное для попаданца, например, толуол. Также ее можно выделять из ароматических смол типа росного ладана, которые издавна добывались на Яве и Суматре. Однако есть и более доступный источник бензойной кислоты — моча коров и лошадей.

Растительный корм, такой как трава или [...]]]> Бензойная кислота C6H5CO2H — весьма полезное вещество, но для ее получения требуется сырье, дефицитное для попаданца, например, толуол. Также ее можно выделять из ароматических смол типа росного ладана, которые издавна добывались на Яве и Суматре.
Однако есть и более доступный источник бензойной кислоты — моча коров и лошадей.

Растительный корм, такой как трава или сено, содержит бензойную кислоту или ее предшественники, поэтому травоядным животным приходится выводить бензойную кислоту, в больших колиичествах токсичную, из организма. Выводится бензойная кислота с мочой в виде соединения с аминокислотой глицином — гиппуровой кислоты.

Одна корова или лошадь в день выделяет около 150 г гиппуровой кислоты, которую легко извлечь, упаривая мочу в 3-5 раз по объему и подкисляя раствор серной или соляной кислотой — малорастворимая гиппуровая кислота выпадает в осадок. Остающийся раствор пригоден для дальнейшего извлечения мочевины и фосфора, или же для полива селитрянниц.
Из 150 г гиппуровой кислоты при кипячении в присутствии соляной кислоты получается глицин (~60 г) и бензойная кислота (~100 г), которая плохо растворяется в холодной воде и выпадает при охлаждении в осадок. При необходимости бензойную кислоту можно подвергнуть дальнейшей очистке, перекристаллизацией из горячей воды и возгонкой.

В самостоятельном виде бензойная кислота служит хорошим консервантом, а также из бензойной кислоты легко получить бензол, анилин или фенол.
Конечно, таким путем можно производить весьма ограниченные количества ароматических соединений, но, например, для фармацевтических нужд (получения аспирина или других, более действенных препаратов) их должно хватить. Главное не говорить потребителям, из чего сделана чудодейственная таблетка.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/benzojnaya-kislota/feed/ 47
Стеклоуглерод http://popadancev.net.s3-website-us-east-1.amazonaws.com/steklouglerod/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/steklouglerod/#comments Sat, 01 Jan 2022 05:56:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9198 Углерод служит основой множества материалов с самыи разнообразными свойствами, от алмаза и графита до фуллерена и графена. Вряд ли попаданец сможет получить хоть какую-то пользу от графена, даже если научится его делать, но есть весьма интересный углеродный материал, применение которому может найтись и в древности.Это стеклоуглерод.

Как это часто бывает, стеклоуглерод был открыт [...]]]> Углерод служит основой множества материалов с самыи разнообразными свойствами, от алмаза и графита до фуллерена и графена. Вряд ли попаданец сможет получить хоть какую-то пользу от графена, даже если научится его делать, но есть весьма интересный углеродный материал, применение которому может найтись и в древности.
Это стеклоуглерод.

Как это часто бывает, стеклоуглерод был открыт случайно. Бернард Редферн, занимающейся разработкой керамики для ракетных сопел в The Carborund Company в Манчестере, заметил, что липкая лента, которой крепили образцы в печи для обжига, после воздействия высокой температуры не просто обуглилась, а превратилась в необычный блестящий материал.
Вскоре было найдено, что лучший исходный материал для стеклоуглерода это фенольные смолы, и было начато производство различных изделий, в первую очередь химических тиглей.
Для изготовления предметов из стеклоуглерода сначала нужно сделать прототип из резольной фенол-формальдегидной или фурановой смолы, причем в увеличенном масштабе, и затем медленно нагревать до высокой температуры в отсутствие кислорода (в вакууме, азоте или аргоне). При этом сначала происходит пиролиз, а затем структурная перестройка образующегося кокса.
Пиролиз сопровождается уменьщением размеров почти в 2 раза, при этом очень равномерным — если сделать из смолы болт и гайку, подходящие друг к другу и раздельно карбонизовать при одной и той же температуре одинаковое время, то полученные детали из стеклоуглерода тоже будут подходить друг к другу.
Конечные свойства стеклоуглерода зависят от температуры пиролиза, которая может быть от 900 (при этом достигаются максимальные механические свойства) до более чем 2000 градусов.
Стеклоуглерод очень стоек к нагреванию (на воздухе выдерживает 500 градусов, а в инертной среде — до 3000, причем, в отличие от всех остальных форм углерода, не превращается при этом в графит), прочный и твердый (7 по шкале Мооса), не пропускает газы, химически инертный и хорошо проводит ток и тепло. Поэтому стеклоугрерод во многих случаях с успехом заменяет платину, как материал для особо устойчивых сосудов и электродов. Кроме того, этот материал обладает биосовместимостью, из него даже делают искуственные сердечные клапаны. И наконец, изделия из стеклоуглерода выглядят весьма необычно и достаточно привлекательно

Большая ложка дегтя состоит в том, что производство стеклоуглерода весьма время- и энергозатратно. Из-за низкой газопроницаемости заготовки приходится выдерживать при высокой температуре очень долго, например, для тиглей с толщиной стенки 3 мм может потребоваться неделя или даже больше. Но, тем не менее, принципиальных сложностей для получения стеклоуглерода нет, и попаданец вполне может найти ему применение

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/steklouglerod/feed/ 17
Мышьяк http://popadancev.net.s3-website-us-east-1.amazonaws.com/myshyak/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/myshyak/#comments Sun, 12 Dec 2021 15:19:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9202 Для попаданца в прошлое достаточно высока вероятность встретиться с мышьяком, поэтому полезно знать, что это такое и с чем его едят.

Вообще соединия мышьяка — аурипигмент As2S3 и реальгар AsS — известны с глубокой древности и высоко ценились как пигменты

Мышьяк часто содержится в полиметаллических рудах, и при плавке частично попадает в выплавляемый металл [...]]]> Для попаданца в прошлое достаточно высока вероятность встретиться с мышьяком, поэтому полезно знать, что это такое и с чем его едят.

Вообще соединия мышьяка — аурипигмент As2S3 и реальгар AsS — известны с глубокой древности и высоко ценились как пигменты

Мышьяк часто содержится в полиметаллических рудах, и при плавке частично попадает в выплавляемый металл (например, так получалась мышьяковистая бронза), а частично испаряется и уносится из печей с дымом, осаждаясь в виде белого налета — так называемого белого мышьяка (As2O3). При нагревании с органическими веществами или углем оксид мышьяка легко восстанавливается до серого металлического мышьяка. Небольшая добавка мышьяка в свинце повышают его твердость, а в меди и особенно латуни улучшает коррозионную стойкость.

Токсичность мышьяка была хорошо известна с глубокой древности, и его широко использовали как яд. Поскольку симптомы отравления мышьяком носят общий характер, и очень напоминают холеру, долгое время выявить отравление им было невозможно, до появления очень чувствительного метода Марша.

Для анализа по методу Марша пробу смешивают с серной кислотой и добавляют кусочек цинка (и кислота, и цинк должны быть свободны от примесей мышьяка, кроме того, важна подготовка пробы). Выделяющийся водород пропускается через стеклянную трубочку, нагреваемую пламенем, и при наличии мышьяка в пробе получающийся арсин AsH3 разлагается с образованием темного зеркального налета. Похожий налет дает сурьма, но ее несложно отличить от мышьяка по дальнейшему поведению «зеркала» — налет мышьяка при более сильном нагревании улетучивается и оседает дальше на холодных участках трубки.

Более простой, но не такой чувствительный способ определить присутствие мышьяка, предложенный еще раньше Карлом Шееле, — просто понюхать выделяющийся газ, в присутствии мышьяка появляется характереый чесночный запах арсина AsH3. Токсическое действие мышьяка состоит в сильном связывании с атомами серы белков организма (в том числе жизненно важных ферментов), поэтому при отравлении хорошо действуют сернисные антидоты — унитиол и БАЛ. Последний был специально разработан для лечения отравления мышьяксолержащими ОВ типа льюзита и адамсита, что и отражено в его названии названии (Британский АнтиЛьюзит). Оба антидота также эффективны при отравлении ртутью, свинцом и другими тяжелыми металлами, поэтому в аптечке попаданца они точно будут не лишними. При отравлении мышьяком также хорошо действует суспензия гидроксида железа, получающаяся при смешении раствора железного купороса с содой, и образующая с мышьяком нерастворимое соединение FeAsO3, но эффект будет только при очень скором принятии противоядия.

Соединения мышьяка являются сильнодействующими пестицидами, например, для защиты дерева от гниения и древоточцев; для уничтожения насекомых, грызунов или сорняков. Но использовать их нужно с большой осторожностью. Несмотря на высокую токсичность, в небольших количествах мышьяк содержится в организме человека (10-25 мг), а в маленьких дозах оказывает общее укрепляющее действие, чем часто пользовались горняки в Штирии. Препараты мышьяка (например, оксид мышьяка или капли Фоулера — 1% раствор арсенита калия) хорошо действуют при малярии, аутоимунных заболеваниях и даже излечивают некоторые формы рака.

В начале XX в., а именно в 1909 г., на основе мышьяка был получен сальварсан — первый химиотерапевтический препарат, эффективный при сифилисе и сонной болезни, и имевший большое значение вплоть до середины XX в. Есть несколько способов получения этого препарата, но проще всего исходить из фенола, который при нагревании до 150 градусов реагирует с мышьяковой кислотой, давая феноларсиновую кислоту, которую нужно далее обработать нитрующей смесью, и затем провести еще две стадии восстановления.

Полученный прерарат может содержать очень токсичные примеси, поэтому в отсутствие точных аналитических методов каждую партию препарата желательно проверять на животных.
Эффективная доза для лечения сифилиса составляет около 0.003 г на килограмм живого веса, токсичная же доза начинается от 0.1 г/кг. Особенно эффективно сочетание инъекций сальварсана с лечением ртутью, при этом полное излечение первичного сифилиса достигается в 90% случаев.
Конечно, с появлением антибиотиков сальварсан и подобные препараты вышли из употребления, но появление столь действенного средства на 100 или даже 1000 лет реньше может произвести огромный эффект.

Вооруженный этими знаниями попаданец сможет не только защититься от отравления, но и получить значительную пользу от мышьяка и его соединений

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/myshyak/feed/ 14
Цианакрилатный клей http://popadancev.net.s3-website-us-east-1.amazonaws.com/cianakrilatnyj-klej/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/cianakrilatnyj-klej/#comments Wed, 24 Nov 2021 06:27:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9200 Цианакрилатный клей, он же супер-клей, несомненно хорошо знаком любому попаданцу.

История цианакрилатного клея началась в годы Второй мировой войны. Гарри Кувер работал в B.F. Goodrich Company над получением прозрачных полимеров для оптических прицелов, и в качестве одного из мономеров получил этилцианакрилат

Полимер на его основе показал интересные свойства, но с этилцианакрилатом оказалось сложно работать, [...]]]> Цианакрилатный клей, он же супер-клей, несомненно хорошо знаком любому попаданцу.

История цианакрилатного клея началась в годы Второй мировой войны. Гарри Кувер работал в B.F. Goodrich Company над получением прозрачных полимеров для оптических прицелов, и в качестве одного из мономеров получил этилцианакрилат

Полимер на его основе показал интересные свойства, но с этилцианакрилатом оказалось сложно работать, потому что он быстро полимеризовался под действием следов влаги. Об этом мономере Кувер вспомнил позже, когда перешел в компанию Eastman Kodak, где работал над термостойкими полимерами для замены плексигласа в фонарях реактивных самолетов.
Студент, которому был поручен синтез этилцианакрилата, попытался измерить показатель преломления продукта — для этого каплю вещества помещают между стеклянными призмами рефрактометра. Призмы при этом мгновенно склеились, и тут наконец потенциал этого вещества как клея стал очевиден.
В 1951 г. был получен патент, и клей стал выпускаться под маркой Eastman 910. Вскоре патент был продан фирме Loctite, в 1971 г. появилось название Super Bonder, а затем цианакрилатные клеи под разными названиями стали производится во всем мире.

Синтез цианакрилатов начинается с хлоруксусной кислоты. Она известна с 1843 г. и получается при пропускании хлора через горячую уксусную кислоту на солнечном свету. Затем хлоруксусную кислоту превращают в эфир взаимодействием с этиловым спиртом, а затем замещают хлор на цианидную группу действием цианистого натрия или калия.
Полученный цианоуксусный эфир по каплям добавляют к подогретому формалину в присутствии катализатора (0.5% пиперидина или другого вторичного амина). При этом получается этилцианоакрилат, который из-за высокой реакционной способности сразу полимеризуется. Смесь олигомеров отделяют и нагревают в вакууме для деполимеризации (~200 градусов), отгоняя мономерный этилцианакрилат.

Этилцианоакрилатом можно клеить в чистом виде, но обычно добавляется ~10% полиметилметакрилата для загущения, и 0.1-0.5% стабилизаторов (гидрохинона и кислоты), с которым срок хранения клея увеличивается до 1-2 лет.
Цианакрилат мгновенно полимеризуется при сжатии между двумя поверхностями за счет следов влаги, хотя клеевое соединение получается умеренной прочности (около 100 кг/см2) и не очень стойкое к воде и повышенной температуре.
Все наверняка сталкивались мо способностью супер-клея намертво склеивать пальцы. Это свойство нашло применение в медицине — бутил- и октилцианакрилаты используются для быстрой остановки кровотечения и закрытия ран.

Таким образом, попаданец, организовавший самую базовую химическую промышленность, без особых проблем сможет начать производство цианакрилатного клея, однако будет ли в нем реальная потребность, является большим вопросом.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/cianakrilatnyj-klej/feed/ 5
Плексиглас http://popadancev.net.s3-website-us-east-1.amazonaws.com/pleksiglas/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/pleksiglas/#comments Fri, 20 Aug 2021 12:39:43 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9123 Полиметилметакрилат (ПММА), известный всем как оргстекло или плексиглас, был бы очень полезен попаданцу благодаря комбинации прозрачности, прочности и прекрасных диэлектрических свойств. Тем более что для полученния этого пластика, производство которого начато еще в 1930-х годах, достаточно самого простого сырья.

Сейчас, конечно, исходный мономер для ПММА — метилметакрилат — получают из нефти, но долгое время [...]]]> Полиметилметакрилат (ПММА), известный всем как оргстекло или плексиглас, был бы очень полезен попаданцу благодаря комбинации прозрачности, прочности и прекрасных диэлектрических свойств. Тем более что для полученния этого пластика, производство которого начато еще в 1930-х годах, достаточно самого простого сырья.

Сейчас, конечно, исходный мономер для ПММА — метилметакрилат — получают из нефти, но долгое время его производили из ацетона.
Для этого сначала нужно получить циангидрин из ацетона и циановодорода, который, в свою очередь, генерируется из цианида калия или желтой кровяной соли и разбавленной серной кислотой. Ацетонциангидрин медленно добавляется к концентрированной серной кислоте и превращается при этом в амид метакриловой кислоты. Затем добавляется метанол и смесь кипятится несколько часов, что приводит к метилметакрилату и гидросульфату аммония. Метилметакрилат выделяется отгонкой, температура кипения 101 гр.

Как видно, все исходные материалы достаточно доступные, а сам процесс не требует сложного оборудования. Находящийся в цианиде азот не теряется, а остается в виде гидросульфата аммония.

Заполимеризовать метилметакрилат можно при добавлении небольшого количества радикального инициатора (0.02-0.5% перекиси бензоила или других перекисных соединений) и нагревании сначала при 60 гр. до загустения, а потом постепенного повышения температуры до 120 градусов. Самый прозрачный и свободный от дефектов материал получается при полимеризации без нагревания в течение 2-3 недель и последующей термообработке до 100 градусов. В крайнем случае полимеризацию можно осуществить вообще без инициатора, но это займет существенно большое время (несколько месяцев), а механические свойства продукта будут несколько хуже. Но, тем не менее, это вполне рабочий вариант.

Готовый блок ПММА можно распилить на куски нужного размера. Если же мономер полимеризовать между отполированными стеклами, сразу же получатся листы оргстекла нужной толщины и с гладкой поверхностью.

Обработка оргстекла не должна вызвать затруднений — его легко резать, пилить, шлифовать. При нагреве до 100-120 градусов ПММА размягчается и может быть отформован в прессе. Склеивать оргстекло можно растворителями типа дихлорэтана, а еще лучше — исходным метилметакрилатом.

Плексиглас вполне может заменить оптическое стекло, поскольку очень легко полируется и имеет показатель преломления около 1.49.

Если вместо метанола взять другие спирты, то получатся пластики с отличающимися свойствми. Полиэтилметакрилат и полибутилметакрилат менее теплостойкие, но более ударопрочные, особенно на морозе. Полимеры эфиров метакриловой кислоты и многоатомных спиртов (глицерина или этиленгликоля) — не термопласты, а реактопласты — теплоскойкие, неплавкие и устойчивые к растворителям.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/pleksiglas/feed/ 16
Цианистые соединения http://popadancev.net.s3-website-us-east-1.amazonaws.com/cianistye-soedineniya/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/cianistye-soedineniya/#comments Sun, 20 Jun 2021 07:01:59 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9078 Богатые азотом вещества, такие как отходы скотобоен и кожевенного производства, шерсть и т.д., могут служить не только сырьем для селитры, но и для получения цианистых соединений.

Самым простым способом переработки азотсодержащего сырья в цианистые соединения является получение желтой кровяной соли K4[Fe(CN)6]. Для этого высушенные отходы (обрезки кожи и меха, кровь, рога и копыта и [...]]]> Богатые азотом вещества, такие как отходы скотобоен и кожевенного производства, шерсть и т.д., могут служить не только сырьем для селитры, но и для получения цианистых соединений.

Самым простым способом переработки азотсодержащего сырья в цианистые соединения является получение желтой кровяной соли K4[Fe(CN)6]. Для этого высушенные отходы (обрезки кожи и меха, кровь, рога и копыта и т.д.) сплавляются с поташем и обрезками железа при высокой температуре, 900-1000 градусов. Сплавление можно производить на большой железной или чугунной сковороде, а лучше в толстостенной чугунной реторте, добавляя органический материал порциями к расплаву поташа с железом. Получающийся плав называется «синькали».

При сплавлении сначала происходит образование цианида калия, который, при дальнейшем действии на плав горячей воды реагирует с железом с образованием желтой кровяной соли, на что требуется около суток:
6KCN + Fe + 0.5O2 + H2O = K4[Fe(CN)6] + 2KOH
После фильтрации, упаривания растворов и кристаллизации выпадает желтая кровяная соль.
Поташа на каждую плавку берется около 100 кг, но в основном в виде упаренных маточных растворов от предыдущей плавки, свежего поташа из этого количества добавляется лишь 15-20 кг. Количество органического материала зависит от его качества, т.е. содержания азота, и обычно составляет 100-140 кг, а железных обрезков 5-10 кг на указанное количество поташа. В результате получается обычно 11-18 кг чистой желтой кровяной соли.
При сплавлении в цианид превращается 15-20% содержащегося азота, остальное улетает в виде аммиака, поэтому лучше сначала исходное сырье подвергнуть сухой перегонке, получая при этом аммиак (из 100 кг высушенного материала около 10-15 кг аммиака в виде аммиачной воды или карбоната аммония), и сплавлять с поташом уже получившийся животный уголь. А остаток от выщелачивания, в котором остается весь содержавшийся фосфор, годится как удобрение.

Исторически первое применение желтой кровяной соли состояло в приготовлении берлинской лазури (с 1704 г.), весьма ценного пигмента, при взаимодействии с солями железа (III):
3K4[Fe(CN)6] + 2Fe2(SO4)3 = Fe4[Fe(CN)6]3 + 6K2SO4
Стадию получения и выделения желтой кровяной соли при этом можно пропустить, и прямо добавить к раствору синькали соли железа.

Смесь желтой кровяной соли и бертолетовой соли, получающаяся совместной кристаллизацией из горячего раствора, и известная как «белый порох Ожандра», подходит в качестве ударного состава для капсюлей.

Кроме того, желтую кровяную соль можно окислить хлором или свинцовым суриком до красной кровяной соли K3[Fe(CN)6], которая пригодится, например, для светокопирования.

При взаимодействии гексацианоферрата натрия (для его получения нужно взять соду, а не поташ) с нитритом натрия образуется нитропруссид натрия Na2[Fe(CN)5NO], который с 1928 г. и по настоящий момент применяется в медицине как средство для быстрого понижения артериального давления при гипертоническом кризе или для уменьшения кровепотерь во время операций.

Из желтой кровяной соли легко получить цианиды калия и натрия, которые будут очень полезны для электрохимического золочения и серебрения, добычи золота из руд, цианирования стали, получения оргстекла и т.д.. Для этого желтую кровяную соль нужно осторожно расплавить в закрытом тигле, и после охлаждения извлечь цианид водой:
К4[Fe(CN)6] = 4KCN + FeC2 + N2
Но лучше добавить к желтой кровяной соли разбавленную серную кислоту и выделяющийся циановодород (помня о его токсичности) поглотить раствором щелочи:
K4[Fe(CN)6] + 3H2SO4 = 2K2SO4 + FeSO4 + 6HCN
HCN + NaOH = NaCN + H2O

Есть и другие способы получения цианидов, например, из аммиака и муравьной кислоты, из карбоната натрия, угля и аммиака (Beilby process, использовался в конце XIX — начале XX вв.), или даже напрямую из воздуха (Bucher process). Последний способ заслуживает отдельного обсуждения.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/cianistye-soedineniya/feed/ 13
Ультрамарин http://popadancev.net.s3-website-us-east-1.amazonaws.com/ultramarin/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/ultramarin/#comments Sun, 27 Dec 2020 21:11:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=8890 Генри Бессемер, удивленный крайне высокой ценой бронзовой краски, разработал конструкцию аппарата, позволяющего производить бронзовую пудру для краски в больших количествах и крайне дешево. Это изобретение, которое он тщательно скрывал (детали для оборудования заказывались на разных заводах и даже в разных странах), стало для Бессемера и всей его семьи «маленьким Эльдорадо», позволившим вести другие исследования [...]]]> Генри Бессемер, удивленный крайне высокой ценой бронзовой краски, разработал конструкцию аппарата, позволяющего производить бронзовую пудру для краски в больших количествах и крайне дешево. Это изобретение, которое он тщательно скрывал (детали для оборудования заказывались на разных заводах и даже в разных странах), стало для Бессемера и всей его семьи «маленьким Эльдорадо», позволившим вести другие исследования и разработки, обычно очень затратные, и при этом не разориться. Попаданцу же в качестве такого «Эльдорадо» отлично подойдет производство ультрамарина.

Природный ультрамарин, или ляпис-лазурь Na6Ca2(AlSiO4)6(SO4,S,Cl)2, представляет собой алюмосиликат, содержащий серу в виде сульфатных и сульфидных анионов, которые и придает ему яркий синий цвет.

Ляпис-лазурь известна с древних времен, и использовалась в качестве пигмента еще в Античном мире и Древнем Китае. После того, как арабские ученые усовершенствовали методы очистки из ляпис-лазури, она стала самой яркой и насышенной синей краской, доступным в то время.

Но поскольку ляпис-лазурь достаточно редкий минерал, который добывали на территории Афганистана и в Китае, а процесс приготовления краски был весьма трудоемким, ультрамарин всегда высоко ценился — зачастую в несколько раз дороже золота. Более дешевые синие пигменты — азурит и вивианит — не давали такого чистого и насыщенного цвета, и со временем приобретали зеленоватый оттенок. Ляпис-лазурь значительно подешевела с открытием месторождений в Прибайкалье в XVIII в. (из крупных кусков лазурита даже вырезали столешницы), но ультрамарин все равно оставался одним из самых дорогих пигментов.
Все изменилось в 1820-х годах, когда был открыт способ искуственного приготовления ультрамарина.
Для приготовления ультрамарина смесь каолина (100 масс.ч.), сульфата натрия (80-100 масс.ч.) и угля (100 масс.ч.) прокаливается в закрытых тиглях при температуре красного каления, около 800-900 градусов. После медленного остывания масса измельчается и промывается водой, при этом получается так называемый зеленый ультрамарин. Для придания ему синего цвета добавляется сера и смесь прокаливаниемся при невысокой температуре в присутствии воздуха, причем сера прибавляется порциями до достижения нужного оттенка.
Вместо сульфата натрия можно брать соду, и серу добавлять сразу, или прибавлять некоторое количество аморфного кремнезема — тогда получается ультрамарин в более высокой кроющей способностью. Вообще, вариацией соотношения ингридиентов и условий спекания можно получать краски самых разных цветов и оттенков — зеленый, фиолетовый и даже красный.
Получающийся искуственный ультрамарин отвечает общей формуле

n(Na2O·Al2O3·mSiO2)·Na2Sx

где n = 2—3; m = 2—3; x = 1—5,

и очень близок по свойствам к натуральной ляпис-лазури, и имеет такие же свойства — например, устойчив в шелочной среде (можно расписывать фрески) и не выдерживает действия кислот, от которых становится зеленым.
Поскольку все компоненты дешевы и доступны даже в древности, а технология проста, хотя и имеет много нюансов, производство ультрамарина может очень помочь подаданцу, нуждающемуся в средствах для своей прогрессорской деятельности.

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/ultramarin/feed/ 62
Паяльная трубка http://popadancev.net.s3-website-us-east-1.amazonaws.com/payalnaya-trubka/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/payalnaya-trubka/#comments Fri, 04 Dec 2020 16:20:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=8713 Паяльная трубка — это простое, но крайне полезное приспособление, которое служит человечеству уже не одну тысячу лет.

Пламя обычной свечи или масляной лампы имеет достаточно невысокую температуру, потому что топливо сгорает в условиях недостатка кислорода. Если же вдувать дополнительный воздух в пламя через трубку с тонким отверстием, то пламя принимает вид острого языка, [...]]]> Паяльная трубка — это простое, но крайне полезное приспособление, которое служит человечеству уже не одну тысячу лет.

Пламя обычной свечи или масляной лампы имеет достаточно невысокую температуру, потому что топливо сгорает в условиях недостатка кислорода. Если же вдувать дополнительный воздух в пламя через трубку с тонким отверстием, то пламя принимает вид острого языка, в котором достигается очень высокая температура.

Сложно сказать, где и когда впервые использовали паяльную трубку (самое раннее изображение датируется 2400 г до н.э., в Египте), но она была обычным инструментом ювелиров и стеклодувов с древних времен и до появления газовых горелок. А в развивающихся странах ювелиры до сих пор используют паяльную трубку.

Стеклодувы, изготавливавшие термометры, научную аппаратуру и стеклянные украшения, в XVIII в перешли на подачу воздуха мехами, которые качал помошник или сам стеклодув ногой.

Все это, конечно, полезно для попаданца, ведь ему наверняка придется паять твердыми припоями, спаивать стеклянные трубки, плавить сферические линзы для простейшего микроскопа и т.д., но самое полезное применение паяльной трубки другое — это химический анализ.
Впервые использовать трубку для анализа начали в XVII в, а трудами Берцелиуса, Гана и многих других химиков огневой анализ стал очень информативным методом. С помошью паяльной трубки были открыты более десяти новых элементов! Суть анализа состоит в том, что испытуемое вещество (например, какой-нибудь минерал) подвергается действию окислительного или восстановительного пламени, на куске древесного угля, глиняной или гипсовой пластинке.

По поведению вещества (плавление, изменение цвета, окрашивания пламени, образование корольков металла или налетов на угле или гипсе), а также окрашивании капельки расплавленной буры с крупинкой вещества можно определять большое количество элементов, и даже их примерное содержание (например, по размеру королька металла). Вся аппаратура для анализа очень проста, не занимает много места и идеальна для использования в полевых условиях.

С помошью паяльной трубки можно осуществить в миниатюре практически все процессы выплавки металлов (обжиг руды, плавка, купелирование и т.д.) и за очень короткое время — буквально несколько минут — понять, стоит ли эту руду пытаться плавить в печи. Нагревая в пламени паяльной трубки образец глины, можно сразу же оценить ее степень огнеупорности.
С появлением более совершенных методов, в первую очередь спектрального анализа Бунзена и Кирхгоффа, а также развития мокрых методов анализа, огневой анализ быстро утратил свое значение, однако попаданцу этот метод может оказать огромную помошь.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/payalnaya-trubka/feed/ 29