Попаданцев.нет http://popadancev.net.s3-website-us-east-1.amazonaws.com база данных в помощь начинающему попаданцу Mon, 09 Jan 2023 03:06:05 +0000 ru-RU hourly 1 https://wordpress.org/?v=6.0.3 История вязания http://popadancev.net.s3-website-us-east-1.amazonaws.com/istoriya-vyazaniya/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/istoriya-vyazaniya/#respond Mon, 09 Jan 2023 03:04:04 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9375 Нитки и веревки известны человеку по меньшей мере последние 40 тысяч лет. Неизвестно как именно развивались технологии плетения / прядения, но можно не сомневаться что люди издавна проявляли изобретательность в этом вопросе.

Вряд ли классическое ткачество было первой подобной технологией. Скорее люди черпали вдохновение из навыков заплетания кос / плетения прутьев.

Альтернативный способ — [...]]]> Нитки и веревки известны человеку по меньшей мере последние 40 тысяч лет. Неизвестно как именно развивались технологии плетения / прядения, но можно не сомневаться что люди издавна проявляли изобретательность в этом вопросе.

Вряд ли классическое ткачество было первой подобной технологией. Скорее люди черпали вдохновение из навыков заплетания кос / плетения прутьев.

Альтернативный способ — образовать ткань вывязыванием множества узелков. Так появился почти забытый ныне предок вязания — налбиндинг или нольбиндинг.

(отсутствие устоявшегося написания намекает на низкую популярность технологии и та же ситуация наблюдается и в английском языке — Nalbinding, also referred to as nalebinding, nailbinding, naalbinding or naalebinding, also written nålbinding, naalbinding, nalebinding, naalebinding or needle-netting, single needle-netting, single needle-looping, looping)

Небольшой кусок нити закреплялся в грубой игле, протаскивая иглу мастер добавлял новые узлы. Простейший узел вы можете увидеть на следующей иллюстрации.

Более сложные узлы:

Протаскивать длинные концы было неудобно, так что мастеру приходилось постоянно наращивать нить. Энтузиасты любят преуменьшать недостатки, но факты говорят за себя — до изобретения классического непрерывного вязания налбиндинговые издели составляли ничтожную долю археологических находок и практически не отражены в культуре. Сейчас технология практически забыта и используется лишь для нишевых решений вроде вязанных тканей с повышенной плотностью / устойчивостью с повреждениям.

(Одно время была популярна гипотеза что Пенелопа распускала именно вязанную ткань, но сейчас можно уверенно утверждать что до нашей эры классическое вязание не было известно. Возможно сложность распускания плетеной или вязанной налбиндинговым методом ткани должна была подчеркнуть добродетель героини.)

Но где-то в 8 веке нашей эры в арабском мире, возможно в районе Египта, был открыт метод непрерывного вязания. По иллюстрации видно что основная идея тривиальна — мы держим петли предыдущего слоя на одной спице и пропускаем через них свободный конец нити, образуя следующий слой петель, который удерживается второй спицей.

Существует бесчисленное количество тонкостей и дополнений — отметим изобретенную через несколько столетий «резинку». Первые вязанные носки / шапки приходилось поддерживать подвязками. Но ткани можно придать повышенную упругость. Простейший способ — менять направление пропускания петель на каждой последующей петле, создавая изогнутую упругую структуру.

Новый метод быстро распространился по Евразии и вязанные предметы стали использоваться повсеместно, а вяжущая женщина стала символом домашнего уюта. Художники усадили за вязание даже Деву Марию:

Где-то к 1500 году было придумано вязание крючком — теперь уже и жесткие узлы научились вязать непрерывным способом.

Множество узлов можно объединять в узоры.

Идея автоматизации процесса достаточно очевидна и первая вязальная машина увидела свет как минимум в 1598 году. Она имела 8 крючков на дюйм (каждые три миллиметра), но уже следующая версия удвоила плотность вязания и уже в 17-ом веке повсеместно применялись машинки с 20 крючками на дюйм.

Автоматическим вязальным машинам приходилось бороться с жесткой конкуренцией — вязание чулков / носков / шапок было идеальным занятием для фермерских домохозяек в промежутках между бытовыми делами. Пара спиц и моток пряжи — и в редкие моменты отдыха вполне можно соорудить пару чулок за неделю, заработав копеечку в семейный бюджет.

Сложно сказать насколько попаданец будет успешен на поприще автоматизации, но сама возможность весьма интересна.

Вязальная машинка изготовленная на 3D-принтере
Изготовление шапки за полчаса
Детали современной вязальной машины

В общем история вязания будет весьма интересна попаданцу — это и пример на удивление поздно открытой простой и полезной технологии, популярность вязания позволяет легко обосновать факт владения им попаданцем, а история автоматизации даст простор заклепкотворчеству.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/istoriya-vyazaniya/feed/ 0
Огнелиз http://popadancev.net.s3-website-us-east-1.amazonaws.com/ogneliz/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/ogneliz/#comments Wed, 30 Nov 2022 09:45:38 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9368 Рассказ будет не о Firefox’е, а о предшественнике ДВС — вакуумном двигателе (vacuum engine, also called flame-licker engine, flame-engine, flame-dancer).

Проблема раннего парового двигателя — простейший котел съест уйму металла и порядка половины от веса двигателя. Пар обожает конденсироваться на любой холодной поверхности, выделяя при этом уйму тепла, а резкое уменьшение объема при конденсации подсасывает [...]]]> Рассказ будет не о Firefox’е, а о предшественнике ДВС — вакуумном двигателе (vacuum engine, also called flame-licker engine, flame-engine, flame-dancer).

Проблема раннего парового двигателя — простейший котел съест уйму металла и порядка половины от веса двигателя. Пар обожает конденсироваться на любой холодной поверхности, выделяя при этом уйму тепла, а резкое уменьшение объема при конденсации подсасывает новый пар — поэтому пар отдает тепло намного быстрее чем просто горячий воздух, что и используется в паровом отоплении.

А что если сделать все наоборот, в цилиндр подать воздух из топки, нагретый до нескольких сотен градусов, а потом охладить его водяным душем? В результате в цилиндре образуется разрежение до половины-трети атмосферы.

Сэмюэль Браун изготовлял такие двигатели с 1826 года, но двигатели Ленуара и Отто не оставили им никаких шансов.

Как показывают прикидки, идеальный КПД схемы перевалит через 10% уже на 450 градусах Цельсия. В общем на практике вполне можно ожидать эффективности выше чем у пароатмосферной машины, но без тяжелого и дорогого котла.

Конечно цилиндр придется увеличить в разы, на весе мы все равно сэкономим, большая точность расточки не нужна — протечка будет отбирать тепло у воздуха не так эффективно как у пара, уплотнения скорее всего выдержат не больше сотни градусов (идеальный КПД порядка 1,5%), хотя их наверняка получится защитить от перегрева. У Стирлинга цилиндры постоянно ломались, но в вакуумном двигателе тепловые перепады поменьше, на худой конец цилиндр можно держать холодным. Но котел придется топить продуктами перегонки нефти или чистить выхлоп топки от сажи — иначе цилиндр долго не проживет.

В общем при наличии чистого топлива / экспертизы по чистке выхлопа вариант интересный, но не факт что получится заменить паровик.

А что если скрестить схему с двухтактным насосом Гемфри и раскачивать вакуумом воду в трубе? КПД упадет не сильно, но мы избавимся от возни с газогенерацией и зажиганием и обеспечим более «мягкий» рабочий цикл по сравнению со вспышкой сжатого газа. А попозже двигатель можно и переделать на более эффективную схему Гемфри.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/ogneliz/feed/ 16
Самоукорачивающийся свечной фитиль http://popadancev.net.s3-website-us-east-1.amazonaws.com/samoukorachivayushhijsya-svechnoj-fitil/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/samoukorachivayushhijsya-svechnoj-fitil/#comments Sun, 21 Aug 2022 09:35:28 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9353 Свечи применяются для освещения по меньшей мере две с половиной тысячи лет, возможно пять тысяч лет. И лишь пару сотен лет назад они были кардинально улучшены.

Возьмите кусок нити и обмакните его концы в растопленный жир несколько раз — и у вас в руках окажется пара свечей. Несколько ускорить процесс можно при помощи формы на [...]]]> Свечи применяются для освещения по меньшей мере две с половиной тысячи лет, возможно пять тысяч лет. И лишь пару сотен лет назад они были кардинально улучшены.

Возьмите кусок нити и обмакните его концы в растопленный жир несколько раз — и у вас в руках окажется пара свечей. Несколько ускорить процесс можно при помощи формы на одну или несколько свечей.

В качестве фитиля использовалась обычная легко скрученная нить. Растопленный жир / воск поднимался по фитилю за счет капиллярного эффекта и сгорал. Нить пропитывалась специальным составом для замедления горения. Некоторые составы — например соляной раствор, не только замедляли горение фитиля, но и увеличивали эффективность свечи за счет желтого свечения натрия.

Нить изгибалась в пламени самым причудливым образом, раскручивалась в грибовидную форму, мешая конвекции, выходила в верхнюю часть пламени и начинала дымить. Так что хотя бы раз-два в час фитиль подравнивали специальными ножницами.

Наконец в 1825 году француз Cambaceres придумал использовать не скрученную, а сплетенную (аналогично косе) нить. Одна из прядей заменялась на тонкую проволочку, а после — на более туго скрученную / натянутую нить.

В результате фитиль повторяемым образом загибался в сторону и прогорал, не создавая проблем для верхних частей пламени.

Для заплетания нити использовалась машинка с подвижными катушками вроде приведенных на видео по ссылками [1] [2] [3] или на иллюстрации ниже.

В общем интересный вариант для попаданца — пробную партию свечей с самоукорачивающимися плетеными фитилями можно изготовить с минимумом ресурсом, а затем, с машиной для плетения, забрать самых прибыльных клиентов.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/samoukorachivayushhijsya-svechnoj-fitil/feed/ 35
Иллюстрации из книг — 9 http://popadancev.net.s3-website-us-east-1.amazonaws.com/illyustracii-iz-knig-9/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/illyustracii-iz-knig-9/#comments Sat, 06 Aug 2022 05:53:55 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9347 Все иллюстрации из книги The forgotten arts and crafts by John Seymour.

Быстро изготовить круглые колышки для деревянных граблей можно при помощи металлической трубки с заточенными краями — просто вбиваем кусок дерева с трубу молотком.

Деревянные вилы распаривают и оставляют на форме для придания нужной формы.

Различные виды лестниц, в основном для [...]]]> Все иллюстрации из книги The forgotten arts and crafts by John Seymour.

Быстро изготовить круглые колышки для деревянных граблей можно при помощи металлической трубки с заточенными краями — просто вбиваем кусок дерева с трубу молотком.


Деревянные вилы распаривают и оставляют на форме для придания нужной формы.

Различные виды лестниц, в основном для сбора фруктов.

Деревянная дымовая труба (обмазана глиной изнутри).

Проходы в изгородях для скота.

Устройство деревянного колеса.

Греем железный обод и насаживаем его на колесо.

Лебедка для стягивания клепок.

Маслобойки.

Устройство телеги.

Сани для сбора моллюсков после отлива.

Корзины.

Ловушки для рыбы и раков / крабов.

Ткацкий станок.

Чистка фруктов.

Захват для переноса ледяных блоков.

Устройство ледника.

Ручная(!) ледоделка.

Обратите внимание на упоры для рычага на прессе.

Пасечник успокаивает пчел дымом.

А когда вы в последний раз видели стиральную доску?

А как насчет веника?

Еще один вымирающий вид — утюги.

Стиральные машины.

Меха и ручной вентилятор для раздувания углей.

Грелки.

Складная ванная.

Чистка дымохода.

Ловушки для крыс, пчел и тд тп.

Мы уже упоминали про необходимость регулировки высоты подвеса над огнем. На иллюстрациях ниже можно увидеть некоторые альтернативные конструкции.





]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/illyustracii-iz-knig-9/feed/ 15
Нам 10 лет! http://popadancev.net.s3-website-us-east-1.amazonaws.com/nam-10-let/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/nam-10-let/#comments Tue, 26 Jul 2022 11:18:43 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9338 19 июля 2012 года kraz опубликовал первую статью на сайте. С тех пор мы опубликовали более 600 постов и получили почти 40 тысяч комментариев!

Наши авторы:

kraz 433 статей vashu1 101 4eshirkot 38 LysenkoAA2 18 Grue 5 xolmc 4 PaRus 2 K_mert 2 Draft 2 KonungGogn 2 WhiteWind 1 karakh 1 o.volya 1

Комментаторы ходят [...]]]> 19 июля 2012 года kraz опубликовал первую статью на сайте. С тех пор мы опубликовали более 600 постов и получили почти 40 тысяч комментариев!

Наши авторы:

kraz 433 статей
vashu1 101
4eshirkot 38
LysenkoAA2 18
Grue 5
xolmc 4
PaRus 2
K_mert 2
Draft 2
KonungGogn 2
WhiteWind 1
karakh 1
o.volya 1

Комментаторы ходят к нам как на работу — в выходные число комментариев в полтора раза меньше чем в будни, а по времени суток пик приходится в аккурат на рабочее время (а заводы стоят!).

Самая активная двадцатка комментаторов (полный список):

kraz 4469
vashu1 3873
dan14444 2786
Taras 2572
dimav 1904
Hludens 1406
инженер 766
4eshirkot 765
2:5080/205 681
Йож 678
DlMFlRE 629
Akray 604
vpotapov1 528
Тарас 463
Гутенберг 446
hludens 413
onosamo 382
Nw 371
Grue 365
SaxaHorse 356

Число постов по годам:

Число комментариев по годам:

С днем рождения!

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/nam-10-let/feed/ 8
Шоколад — 2 http://popadancev.net.s3-website-us-east-1.amazonaws.com/shokolad-2/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/shokolad-2/#comments Sun, 08 May 2022 09:15:18 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9320 История шоколада содержит целый ряд открытий не содержащих особых технологических трудностей, а потому весьма интересна попаданцу.

Какао, или шоколадное дерево, происходит из в субэкваториальных районах Южной Америки и культивируется человеком по меньшей мере 5 тысяч лет. Растет в жаркой и влажном климате, не выносит прямых солнечных лучей, так что его обычно затеняют другими деревьями, [...]]]> История шоколада содержит целый ряд открытий не содержащих особых технологических трудностей, а потому весьма интересна попаданцу.

Какао, или шоколадное дерево, происходит из в субэкваториальных районах Южной Америки и культивируется человеком по меньшей мере 5 тысяч лет. Растет в жаркой и влажном климате, не выносит прямых солнечных лучей, так что его обычно затеняют другими деревьями, вроде кокосовых пальм. Плоды ростут прямо на стволе. Дерево начинает плодоносить через 6 лет и достигает полной зрелости в 12, принося урожай эквивалентный примерно половине килограмма какао в год.

Разрезав плод, вы обнаружите несколько десятков какао-бобов в белой и влажной оболочке, содержащей темную и горькую сердцевину. Первым делом плоды надо оставить ферментироваться (гнить) в темном прохладном месте полторы-две недели — например на подстилке из банановых листьев или в решетчатом ящике.

После этого сердцевину извлекают, сушат на солнце и прожаривают на огне. Получившийся темный и твердый боб прекрасно хранится. Все эти действия были открыты еще аборигенами. Теперь боб можно растолочь и размешать с горячей водой, добавив перец чили, мед и другие добавки. Индейцы часто пили этот напиток холодным, так что не факт что попаданец вообще узнает в напитке шоколад, особенно учитывая его чудовищную жирность с сильным горьким и кислым привкусом.

Европейцы оценили необычный вкус и быстро пристрастились к новому лакомству. Рецепт постепенно эволюционировал в горячий напиток на молоке с добавлением тростникового сахара и специй вроде ванилина.

В зависимости от степени прожарки бобов напиток мог иметь жирный и менее горький вкус (слабая прожарка) или менее жирный и более горький вкус. В любом случае оставался кислый привкус. Тем не менее за 18ый век производство какао-бобов выросло с сотни тонн в год до нескольких тысяч.

В 1815 году голландцы отладили процесс ощелачивания раствором карбона кальция, что убрало кислый вкус. Затем жирность стали понижать, извлекая масло какао винтовым прессом (процесс запатентован в 1828) и/или отстаиванием в тканевых мешках в духовке. Получившийся продукт в целом идентичен современному какао.

Какао-масло интересно тем что его температура плавления близка к температуре плавления человеческого тела. В 1847 году его начали смешивать с какао, с добавлением сахара и ванили, получая твердые плитки — аналог современного темного/горького шоколада. Продукт имел очень неравномерную структуру и горький привкус.

Горькость пытались ослабить молоком, но оно упрямо не хотело смешиваться с маслом какао. В 1875 проблему решили использованием известного с начала века сухого молока — так был получен король шоколадов, молочный шоколад.

В 1879 году был открыт ключевой процесс — конширование. Горячая шоколадная масса в течении минимум суток перемешивалась с максимальным увеличением поверхности. Продукт наконец-то обрел современную однородную структуру тягучей суспензии, а дегазация и полное покрытие твердых частиц жировой оболочкой сделали вкус намного приятнее. Изобретатель процесса Линдт держал его в секрете как минимум 20 лет — однородный шоколад стал мегапопулярен в элитных кругах и обеспечил огромные прибыли.

Последним шагом стало понимание тонкостей кристаллизации шоколада. Шоколад образует кристаллы 6 типов и проще всего получить самые неинтересные — матовые мягкие и легко тающие. Со временем они перейдут в плотную блестяющую и хрустящую форму, но при этом на поверхности некрасивый выделится белый налет жира. В шоколад можно добавить затравку из шоколада в кристаллах желательного типа — этот способ относительно прост для кустарного применения, но в современных промышленных условиях обычно шоколад остужают до определенной температуры, потом чуть подогревают и разливают в формы. (детали популярно описаны в книге «Из чего это сделано?» Марка Медовника)

Конечно на этом прогресс не остановился. В 1920-ых годах был придуман хрустящий и крупнопористый Flake. В 1936 был разработан белый шоколад — в него добавляют какао-масло, но не порошок, хотя этот вид стал популярным куда позже. Выдерживая жидкий шоколад в вакууме несколько часов получают пористый шоколад. Новинка 21 века — рубиновый шоколад.

Невкусный и трудноплавящийся шоколад рационов американской армии, шоколадные фонтаны, шоколадные чипсы, пиццы, фадж, ликеры и молоко, нутелла и брауни, мокачинно, шоколад с добавкой мяты, орехов, сала и рома… В общем перечислять все разновидности и производные можно бесконечно.

Разумеется изготовление хорошего шоколада включает бесчисленное количество тонкостей, но уже видно что знание нескольких ключевых моментов будет бесценно для попаданца в 19 век и раньше.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/shokolad-2/feed/ 202
Роламит http://popadancev.net.s3-website-us-east-1.amazonaws.com/rolamit/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/rolamit/#comments Sun, 20 Mar 2022 06:29:28 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9297 В середине 1960-х доктор Wilkes работал над использованием S-образных металлических лент в акселерометрах. Такая конфигурация отличалась замечательной чувствительностью, но ее нестабильность убивала любую надежду на практическое применение. Но добавление пары роликов в ленту убирало все проблемы системы, сохраняя все ее достоинства.

Так появился принципиально новый механизм — линейный подшипник роламит. Он отличается на порядок меньшим [...]]]> В середине 1960-х доктор Wilkes работал над использованием S-образных металлических лент в акселерометрах. Такая конфигурация отличалась замечательной чувствительностью, но ее нестабильность убивала любую надежду на практическое применение. Но добавление пары роликов в ленту убирало все проблемы системы, сохраняя все ее достоинства.

Так появился принципиально новый механизм — линейный подшипник роламит. Он отличается на порядок меньшим трением чем шариковые подшипники (лента и ролики не движутся относительно друг друга) и для него не нужна точная выдержка диаметров роликов.

Роламиты широко использовались в 70-х и 80-х в механических акселерометрах, от атомных боеголовок до сенсоров удара воздушных подушек (patent US4092926A, в настоящее время вытеснены MEMS-акселерометрами). Экспериментальные инерциальные системы на основе роламита показали способность отслеживать положение машины с точностью порядка процентов в радиусе нескольких километров.

Исследовались вариации принципа роламита — от систем из нескольких соединенных роламитов (см Rolamites and non uniform motion mechanisms) до термостата из роламита с биметаллической лентой с треугольным вырезов (в разы чувствительнее простой биметаллической пластины).

Еще интереснее возможность использования принципа роламита в подшипниках вращения.

Сложно сказать насколько данные подшипники применимы в попаданческих условиях. Как минимум это гаджет аналогичный капельнице Кельвина — явно оригинальная и интересная игрушка, которая откроет перед нищим попаданцем двери университетов и лабораторий.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/rolamit/feed/ 3
Иллюстрации из книг — 8 (строители) http://popadancev.net.s3-website-us-east-1.amazonaws.com/illyustracii-iz-knig-8-stroiteli/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/illyustracii-iz-knig-8-stroiteli/#comments Sun, 20 Mar 2022 01:45:23 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9295 Источники иллюстраций — см. название файла.

При перемещении больших каменных частей вечная головная боль — крепление подвеса, особенно если блок со всех сторон окружен другими элементами или точку подвеса надо замаскировать. Дополнительную проблему создает низкая прочность камня на растяжение.

Методы соединения деревянных брусьев в Античности.

Опоры крыши.

Инструменты плотника, Египет.

Подвесной [...]]]> Источники иллюстраций — см. название файла.

При перемещении больших каменных частей вечная головная боль — крепление подвеса, особенно если блок со всех сторон окружен другими элементами или точку подвеса надо замаскировать. Дополнительную проблему создает низкая прочность камня на растяжение.


Методы соединения деревянных брусьев в Античности.

Опоры крыши.

Инструменты плотника, Египет.

Подвесной потолок, Рим.

Экономим на соединении камней в стене.

Сверление каменной вазы египтянином.

Обработка сегмента колонны на вертикальном станке.

Обработка колонны на горизонтальном станке.

Изготовление свинцовой трубы.

Простейшее поселение под навесами.

Хижина из костей мамонтов, реконструкция.

Мегалиты.

Крупное мегалитическое захоронение.

Польская деревня времен античной Греции.

Свайное поселение.

Славянское поселение на холме над рекой.

Усадьба богатого египтянина.

Ворота форта американских колонистов.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/illyustracii-iz-knig-8-stroiteli/feed/ 5
Коктейль Молотова http://popadancev.net.s3-website-us-east-1.amazonaws.com/koktejl-molotova/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/koktejl-molotova/#comments Sat, 05 Mar 2022 11:27:13 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9287 Вообще-то название «Коктейль молотова» — неправильное. Финны в 1939-м назвали его «коктейль ДЛЯ Молотова», но сути это не меняет. В окопах его чаще называли просто «зажигательная смесь», но в названии статьи куда красивее именно «коктейль Молотова».Необходимость этой статьи спорная — потому что для тех, кому бы хорошо знать рецепт, статья будет заблочена. А те, для [...]]]> Вообще-то название «Коктейль молотова» — неправильное. Финны в 1939-м назвали его «коктейль ДЛЯ Молотова», но сути это не меняет. В окопах его чаще называли просто «зажигательная смесь», но в названии статьи куда красивее именно «коктейль Молотова».
Необходимость этой статьи спорная — потому что для тех, кому бы хорошо знать рецепт, статья будет заблочена. А те, для которых статья будет видна — те сами могут писать статьи, основанные на практике.
Тем не менее — поехали!…


Необходимость этой статьи для попаданца спорна еще и потому, что идея зажигательной смеси абсолютно не нова. Первая исторически достоверная запись подобного это «греческий огонь». Состав его неизвестен и для попаданца не имеет значения.  В Первую Мировую зажигательные снаряды в стеклянной посуде сбрасывали с аэроплана. Подобные штуки делали во все времена, делали из того, что под рукой и называли на злобу дня.

Коктейль Молотова это многокомпонентная смесь:
1. Горючее вещество. В наших условиях — углеводород.
2. Загуститель, чтобы горючее вещество быстро не стекало, а желательно, наоборот прилипло.
3. Добавки для повышения температуры горения.
4. Добавки для самовоспламенения.

Сразу скажу про четвертую добавку.
В гаражных условиях сделать самовоспламеняющуюся смесь это где-то между «невозможно» и «смертельно для производителя».
Во Вторую Мировую делали немного проще — приматывали к бутылке негаснущие штормовые спички, которыми чиркали перед броском. Необходимость такого вызвана тем, что горящий фитиль очень хорошо виден и бросать бутылку в темное время суток очень небезопасно.
В промышленных условиях Второй Мировой для самовоспламенения выпускались тонкостенные стеклянные капсулы со смесью из серной кислоты, бертолетовой соли и сахарной пудры.

Итак, простейший рецепт.
Необходимо взять бутылки 0.5 — 0.7 литра, желательно тонкостенные. Поэтому бутылки из-под шампанского лучше не брать. Отлично подходят водочные бутылки советского образца, современные бутылки из-под пива хуже, но они много доступнее.
Потом нужно сделать смесь из 3/4 бензина и 1/4 машинного масла и разлить по бутылкам, ни каким образом не наливая под горлышко, а только от половины до двух третей. Можно даже только на треть. Дело в том, что в бутылке должны скопиться пары бензина, именно они вспыхивают.
Следующий этап — фитиль, это 20-50 сантиметровая полоса ткани шириной сантиметров 10 и при этом ткани НЕ синтетической, лучше всего чистый хлопок. Фитиль обмачивают бензином и запихивают внутрь. Должен ли конец макаться в жидкость — об
том ведутся споры. Если ткань будет синтетическая, она плохо впитывает влагу, и очень быстро высыхает.
Теперь нужен еще кусочек сухой ткани, чтобы заткнуть бутылку. Идеально подходит женский тампон. Сверху желательно замотать скотчем. Внешнюю поверхность бутылки хорошо обтереть спиртом, чтобы при поджигании не вспыхнула в руках.
Коктейль молотова имеет срок годности, уже через час или два эффективность упадет, а через сутки желательно это всё перепаковать.

Рецепт поэффективнее: 100 мл ацетона, в котором растворяют пенопласт до получения густой сиропоподобной смеси. Разводится бензином в соотношении 1:1. Это так называемый «напалм». Так называемый потому что слог «наПАЛМ» говорит о присутствии пальмового масла, кроме того там нафтенат алюминия и много еще чего интересного.

Еще очень интересный рецепт это взять хозяйственное мыло (именно хозяйственное!), натереть на грубой терке и растворить в бензине или солярке. Растворяется оно долго, поэтому для ускорения даже применяют подогрев смеси на водяной бане.

Вообще, рецептов существует гора.

Вот парочку сайтов с рецептами на украинском языке: zaxid.net и barout.media

Вот рецепт от официального канала ЗСУ:

Вот результат применения в городских условиях, в данном случае на Майдане:

Вот попытка применения во время войны с Россией:

p.s. Если у вас заблокировали поиск по словам «коктейль Молотова», ищите по поисковому запросу «Бандера-смузи».

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/koktejl-molotova/feed/ 218
Натрий и калий http://popadancev.net.s3-website-us-east-1.amazonaws.com/natrij-i-kalij/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/natrij-i-kalij/#comments Mon, 21 Feb 2022 14:01:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9282 Натрий и калий были открыты в самом начале XIX в., когда из смог выделить в свободном состоянии Гемфри Деви при электролизе растворов едких щелочей с ртутным катодом. Электролиз, но уже расплавов хлоридов, является методом их получения и в наше время. Однако для попаданца больший интерес представляет возможность получения щелочных металлов термохимическим методом, как они [...]]]> Натрий и калий были открыты в самом начале XIX в., когда из смог выделить в свободном состоянии Гемфри Деви при электролизе растворов едких щелочей с ртутным катодом. Электролиз, но уже расплавов хлоридов, является методом их получения и в наше время.
Однако для попаданца больший интерес представляет возможность получения щелочных металлов термохимическим методом, как они и производились на протяжении почти всего XIX века.

Образование натрия при накаливании соды с углем или железом наблюдали Гей-Люссак, Тенард и многие другие, но основной вклад в развитие технологии производства натрия внес Сент Клер Девиль, которому натрий был необходим для получения алюминия.
По методу Девиля смесь 30 кг соды, 13 кг угля и 5 кг мела помещалась в трубу из железа (примерно 120 на 15 см со стенками в 12-15 ми) и нагревалась в печи до белого каления
Na2CO3 + 2C = 2Na + 3CO

При этом происходило восстановление натрия, который испарялся (температура кипения 882 градуса), конденсировался в специальном железном холодильнике, и стекал в подставленный сосуд с маслом или нефтью для зашиты от действия воздуха.

Перегонка длилась несколько часов, после чего остаток из реторты быстро удаляли и загружали новую порцию смеси. Из одной загрузки получалось около 5 кг натрия.
Аналогично получался и калий из поташа, но при этом процесс осложнялся взаимодействием калия с CO, при котором образовывались K2C2 и K6C6O6.
Метод Девиля был далек от совершенства, выход натрия не превышал 40%, железные реторты очень быстро прогорали, и расход на их замену составлял до половины стоимости производимого натрия (на 1887 г около 11 шиллингов за килограмм). Тем не менее, стоимость получаемого с помощью натрия алюминия сразу же уменьшилась более чем в 20 раз.
Еще более совершенный метод разработал Кастнер, тоже занимавшийся проблемой получения алюминия. По его методу едкий натр смешивался с карбидом железа FeC2 (который, в свою очередь, получался прокаливанием железной руды со смолой или угольным порошком), и нагревался в чугунном тигле, снабженном крышкой и газоотводной трубкой.
4NaOH + FeC2 = 2Na + Na2CO3 + Fe + 2H2 + CO
При этом требовалась меньшая температура, не более 1000 градусов, поэтому реакцию проводили в дешевых чугунных тиглях, а утилизация натрия, с учетом образующегося карбоната, была практически полной. Стоимость производимого по этому способу натрия получалась около 2 шиллингов за килограмм; производительность печи с тремя тиглями составляла 45 кг натрия в день.
Но метод Кастнера не получил большого распространения, так как тем же Кастнером вскоре был разработан первый практически применимый метод электролитического восстановления.

Самое очевидное для пораданца применение натрия и калия состоит в металлотермическом восстановлении алюминия, магния и других металлов, которые весьма ценны как легирующие добавки и получение которых будет оправданно даже таким относительно дорогим способом. Например, для модифицирования чугуна нужно лишь 1-5 кг магния на тонну, а для раскисления тигельной стали всего 150-500 г алюминия на тонну. Свойства медных сплавов — бронз и латуней — улучшаются при добавках уже 1-2% алюминия, 5-10% достаточно для получения алюминиевой бронзы без других легирующих элементов.

Другая весьма полезная область — получение перекисей. Если сжигать натрий на воздухе, получается смесь оксида и пероксида (20-30%), которая при дальнейшем накаливании до 300-400 градусов поглощает кислород и превращается в чистый пероксид.
4Na + O2 = 2Na2O
2Na2O + O2 = Na2O2
Калий же сразу дает супероксид
K + O2 = KO2
В самом простом варианте натрий сжигался на железной сковороде, но продукт получался с примесями железа, что недопустимо для некоторых целей. Лучший способ состоит в распылении жидкого металла струей воздуха (предварительно очищенного от воды и углекислого газа пропусканием через негашеную известь) в металлической камере достаточного размера, при этом частицы получающихся пероксидов успевают охладиться до падения на дно и не вызывают разъедания железа.

Перекиси натрия и калия при растворении в воде дают щелочной раствор перекиси водорода, пригодный для беления.
Na2O2 + 2H2O = 2NaOH + H2O2
Саму перекись водорода тоже несложно получить из пероксида натрия (не содержащего примесей железа) действием разбавленной кислоты.
Однако самое заманчивое для попаданца применение пероксидов натрия и калия — регегерация воздуха в дыхательных аппаратах или подводных лодках.

Таким образом, и натрий, и калий вполне могут быть получены практически в любых условиях, лимитирующим фактором является только доступность железа. Польза этих металлов для попаданца тоже не вызывает сомнений

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/natrij-i-kalij/feed/ 22
Селитра и селитрянницы -2: Интенсивная нитрификация http://popadancev.net.s3-website-us-east-1.amazonaws.com/selitra-i-selitryannicy-2-intensivnaya-nitrifikaciya/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/selitra-i-selitryannicy-2-intensivnaya-nitrifikaciya/#comments Wed, 09 Feb 2022 21:59:00 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9273 Производство селитры — крайне волнующий попаданца вопрос. Однако классические селитрянницы имеют слишком низкую производительность, а извлечение получившейся в них селитры очень трудозатратно. Но, обладая современными знаниями, попаданец может многократно увеличить производительность селитрянниц и в значительной мере удовлетворить все потребности в нитратах. В качестве хорошей опорной точки стоит использовать уже упоминавшиеся здесь работы Мюнца и [...]]]> Производство селитры — крайне волнующий попаданца вопрос. Однако классические селитрянницы имеют слишком низкую производительность, а извлечение получившейся в них селитры очень трудозатратно. Но, обладая современными знаниями, попаданец может многократно увеличить производительность селитрянниц и в значительной мере удовлетворить все потребности в нитратах.
В качестве хорошей опорной точки стоит использовать уже упоминавшиеся здесь работы Мюнца и Лайне, которые в начале XX в. разработали метод интенсивной нитрификации и изложили его в двух статьях (Compt. rend., 1905, 141, 861 и 1906, 142, 1239), перевод которых приводится ниже.

Исследования по интенсивной нитрификации. Сообщение от А. МЮНЦА и Э. ЛАЙНЕ.
С того уже давнего времени, когда один из нас вместе с Т. Шлезингом показал, что естественная нитрификация есть результат действия микробов, многочисленные работы пролили свет на многие моменты этого явления. В первую очередь следует привести работы Виноградского, который выделил и культивировал в чистотой форме организмы, выполняющие нитрификацию, и установил, что, в отличие от своих сородичей, они могут расти в средах, свободных от органического вещества. С тех пор исследования различных ученых, в частности Варингтона, Омельянского, Буланже и Массоль уточнили условия. в которых действуют нитрифицирующие ферменты. Их исследования проводились безукоризненным научным методом, на чистых культурах и в химически определенных средах.
Несколько абстрактная цель, которую ставили перед собой эти ученые, требовала этой строгости в рабочем режиме. Но при естественной нитрификации условия более сложны, когда организмы, ее производящие, вступают в противоречие с множеством других микробов, кишащих в почве, существенно изменчивой среде, основном очаге нитрификации. Мы возобновили изучение нитрификации, поставив цель добиться интенсивной нитрификации, т. е. получения больших количеств нитратов, путем создания нитрификаторов с быстрым действием и высокими выходами.
Это делалось не с точки зрения сельскохозяйственных приложений, которыми мы занимаемся; на самом деле не имеет большого значения, чтобы азот был дан растениям в нитрифицированной форме; он может быть предоставлен им в любой другой форме, так как почва, в которую вносятся азотистые вещества, сама изобилует бактериями, превращающих их в нитраты. Мы прежде всего рассмотрели производство селитры с точки зрения ее применения в производстве военного снаряжения.
Основным средством современной войны является использование взрывчатых веществ, и все они происходят из селитры и накопленной в ней энергии, которую взрывчатка реализует, внезапно выделяя эту энергию. Чудовищные эффекты военных машин являются продуктом труда, накопленного крошечными организмами в недрах земли.
В прошлом селитра поступала в основном из Индии; но, во время войн Революции и Первой Империи, когда Франция была подвергнута морской блокаде, приходилось пользоваться местными ресурсами и уже устаревшее искусство производства селитры вновь сильно развилось, особенно благодаря трудам выдающихся ученых. Производства селитры хватило сначала для нужд обороны, а потом и нападения. Примерно в 1840 году открытие огромных месторождений нитрата натрия в Перу лишило местное производство всей важности и искусство производства селитры исчезло. Селитра же из Перу до сих пор используется во всем мире.
Но здесь мы ставим проблему, которая, как нам кажется, имеет большое значение: это проблема возможности снабжения. Даже не принимая во внимание истощение месторождений, мы можем предвидеть случай войны, в которой Франция, как в 1793 г., так и на протяжении всего существования первой империи, прервет свои морские коммуникации. Иссякнет источник поставок селитры и, следовательно, военного снаряжения. Тогда придется использовать местные запасы селитры, как это делали наши предки. Но хватит ли сегодня тех количеств, которые были достаточны в конце восемнадцатого и начале девятнадцатого века? Смогли бы ли подвалы и конюшни, и селитрянницы, устроенные по старым методаи, обеспечить достаточное количество селитры для современных нужд сухопутных и морских армий? Можно смело ответить нет, это было бы далеко не так.
Расход боеприпасов в современной войне несравненно, может быть, в пятьдесят или сто раз больше, чем сто лет назад; мы имели недавний пример этого перед глазами, в перипетиях русско-японской войны, где это потребление было даже расточительным, но расточительным, вероятно, необходимым, по крайней мере неизбежным. Во время войны не должны вмешиваться никакие соображения экономии; запасы поэтому должны быть, так сказать, неограниченными. Таким образом, средств, использовавшихся в прошлом для производства селитры, было бы явно недостаточно, но следует надеяться, что, воспользовавшись недавно приобретенными представлениями о процессе нитрификации, мы сможем создать селитрянницы с гораздо более быстрым действием и с намного более высокой производительностью.
Именно к решению этой проблемы мы приложили свои усилия, и мы сообщаем здесь первые результаты, которые получили. Селитру получают в природе путем окисления самых разнообразных азотистых материалов, особенно остатков животной и растительной жизни. Но азот сначала должен быть превращен в аммиачную комбинацию. Мы начали с изучения нитрификации аммиачных солей, которые можно найти в значительных количествах на местном рынке, получаемых из побочных продуктов производства газа и кокса, а также при перегонке животных отходов.
Эти соли также могут быть приготовлены изо всех азотсодержащих материалов, и, при необходимости, их количество может быть увеличено почти неограниченным. Позже мы рассмотрим, также с точки зрения интенсивной нитрификации, непосредственное превращение различных азотистых материалов без предварительного изготовления аммиачных солей.
Сначала мы рассмотрели, до какой степени можно сделать нитрификацию более интенсивной, воздействуя на растворы, стекающие по твердым и инертным носителям при соприкосновении с воздухом.
Угольный шлак успешно использовался в очистных сооружениях, господа Буланже и Массоль подчеркнули его ускоряющую роль. При поиске наиболее выгодных носителей мы обнаружили, что гранулированный животный уголь обладает гораздо большей способностью, чем шлак, помогать окислению, особенно при работе с относительно концентрированными растворами 7,5 г сульфата аммония на литр. Таким образом мы поливали окисляющие поля; одно было сделано из животного угля, другое из шлака, и мы обнаружили, что при объеме 10 дм3 животный уголь может производить в день количество селитры, выраженное в нитрате калия, равное 8,10 г, в то время как шлак давал только 4,54 г.
Имея субстрат, значительно превосходящий те, которые использовались до сих пор, мы искали наиболее благоприятные условия для производства большой массы селитры, работая при температуре, близкой к 30⁰ С. Мы уже знали, что не можем бесконечно увеличивать концентрацию аммиачных растворов. С целью получения наибольшего количества нитратов мы варьировали эту концентрацию. Максимальную суточную производительность нам давал раствор 7,5 г сульфата аммиака на литр, который производил регулярно 8.1 г селитры, в то время как с 10 г на литр мы получили только 6, 22 г. (¹Все наши результаты выражены в нитрате калия).
Поэтому мы остановились на нитрифицируемом растворе 7,5 г на литр, поливая им уголь, предварительно засеянный нитрифицирующими организмами, количествами, обеспечивающими почти полную нитрификацию аммиачного азота, не прибегая, однако, к получению полной нитрификации, которая бы заставили бы замедлить ход операции и на столько же уменьшили бы ежедневное производство селитры, что является основной целью наших испытаний. Таким образом, нам удалось увеличить объем поливочных растворов до 960 см3 в сутки на 10 дм3 угля.
Этот результат показывает, что можно приготовить при относительном небольшом объеме животного угля значительное количество селитры.
Действительно, исходя из этих данных, если разместить на площади в 1 га слой зерненого животного угля высотой 2 м, имеющий местами отверстия, обеспечивающие аэрацию, кроме того, закрытый и защищенный, с возможностью поддержания температуры жаркой теплицы, можно было бы путем методического полива раствором сульфата аммония в количестве 7,5 г на литр получить 16000 кг селитры в день, то есть в год от 5 до 6 миллионов килограммов. Таким образом, видно, что на относительно ограниченной поверхности можно производить огромное количество селитры из солей аммония.
Однако эта интенсивная нитрификация, основанная на использовании аммиачных растворов, имеет серьезный недостаток: это разбавленное состояние, в котором находится образующаяся селитра, и которое требует испарения больших масс воды.
В самом деле, нитрифицированная жидкость содержит только 8—9 г селитры на литр, и такая степень разбавления лишает большую часть ценности этого способа нитрификации, хотя и столь быстрого.
Целесообразно выяснить, нельзя ли значительно обогатить эти жидкости нитралами, чтобы соответственно снизить затраты на концентрирование. Мы уже говорили, что начальная доля аммиачной соли не может быть увеличена без замедления нитрифицирующей активности; но мы знаем, из исследований Буланже и Массоля, что жидкости, уже богатые селитрой, могут продолжать нитрифицироваться при добавлении к ним солей аммония.
Мы думали, что вместо того, чтобы выпаривать раствор, содержащий только около 1 кг на 100 литров, мы могли бы ввести в него количество аммиачной соли, идентичное тому, которое было в нем изначально; пропустить его над окислительным полем один или несколько раз, каждый раз добавляя аммиачную соль, до предела, при котором доля образовавшейся селитры препятствует нитрификации. Наши исследования по этому вопросу продолжаются.
Действуя, как мы только что сказали, на растворах аммиачных солей, мы в любом случае могли бы производить большие количества селитры. Но нам показалось интереснее изучить интенсивную нитрификацию в почве, в земляных селитрянницах, аналогичных тем, которые использовались в прошлом, но с гораздо большей активностью.
Первый момент, который мы попытались прояснить, касается максимального количества, которое может быть нитрифицировано в определенное время, землей в наиболее благоприятном состоянии влажности, которую легко оценить по способность рассыпаться. Сульфат аммония вводился в селитрянницы в достаточном количестве, чтобы они могли проявить все свои окислительные свойства, избегая доз, способных вызвать замедление нитрификации.
Влажность поддерживалась постоянной, а земля подвергалась колебаниям температуры закрытого помещения от 15⁰ до 22°; землю помещали в ящики и время от времени перемешивали железным инструментом, чтобы имитировать вспашку. Количество селитры, образующейся в то же время, значительно варьировалось от одной земли к другой. Приведем некоторые полученные цифры: смесь равных частей суглинка и компоста, с добавлением 2 на 1000 сернокислого аммония, дала за сутки на килограмм земли 0.350 г селитры, или 350 г на кубический метр. Таким образом, с 1 га площади селитрянниц при толщине слоя 50 см будет производиться 1750 кг селитры в день, или около 650 тонн в год. Хорошо подготовленный компост, полученный из смеси листьев, навоза и земли, с добавлением 1 на 1000 сульфата аммония, произвел за 24 часа 0.63 г селитры на 1 кг, то есть 3250 кг на 1 га при слое 50 см толщиной, или 1200 тонн в год,
Вероятно, мы еще не достигли максимального предела суточного производства, но уже можем видеть, что на относительно ограниченных поверхностях можно получать огромные количества селитры, несравненно превосходящие те, которые производились теми селитрянницами, которые устанавливали раньше.
Достигнув быструю нитрификацию, мы искали, до какого предела можно довести обогащение селитрой. С этой целью мы постепенно добавляли сульфат аммония. Мы заметили, что образование селитры продолжается, несмотря на ее накопление в почвах, и что, таким образом, содержание селитры может повышаться постепенно; в некоторых наших опытных почвах это накопление было таково, что земля из легкой и рыхлой становилась пастообразной и пластичной, как плотная глина. В других землях оно продолжалось до полного исчезновения известняка, а затем прекращалось и возобновлялось, как только известняк добавлялся.
Мы еще не достигли предела, при котором накопление селитры препятствует или даже препятствует нитрификации; в том месте, где мы находимся в наших исследованиях, почвы различных видов: компост, суглинок, почва, смешанная с компостом, достигли содержания селитры от 27 до 33 г на килограмм почвы; это настоящие нитроземы, аналогичные тем, что встречаются в тропических регионах, то есть селитросодержащие материалы необычайного богатства.
Интересно было определить степень насыщения жидкостей, пропитывающих эти почвы: в компосте, содержащем почти 50% влажности, обнаруживается раствор селитры 55 г на литр; в смеси горшечной почвы и легкой почвы при 36% влажности степень концентрации составляет 18 г на 1 л, в рыхлой почве при 18% влажности 157 г на л, и в другой аналогичной земле с 15,5% влажности — 143г селитры на литр. При методическом выщелачивании земель, содержащих селитру в виде такого концентрированного раствора, получаются жидкости, настолько насыщенные селитрой, что затраты на выпаривание становятся незначительными.
Эти первые результаты показывают, что, начиная с сульфата аммиака, можно получить нитраты гораздо быстрее и с более интенсивной производительностью, чем в селитрянницах, использовавшихся ранее для производства военных боеприпасов. Они могут обеспечить нас в возможности производства селитры, необходимой для национальной обороны, в случае прекращения поставок из-за границы.


БИОЛОГИЧЕСКАЯ ХИМИЯ. Использование торфа для интенсивного производства нитратов. Сообщение от А. МЮНЦА и Э. ЛАЙНЕ.
Установив, что почвы, богатые органическим веществом, особенно пригодны для интенсивного образования нитратов, мы попытались выяснить, образует ли торф, остаток разложения растений в воде и состоящий почти исключительно из углеродистого вещества, благоприятную почву. активности нитрифицирующих микробов.
Для этой цели были испытаны торфы в различной степени разложения: моховой торф из Голландии, используемый в качестве подстилки, губчатый поверхностный торф или плотный донный торф, взятый с торфяников Йонны и Соммы. Измельченный, смешанный с известняком и засеянный многолетними организмами, затем дополненный сернокислым аммиаком, торф оказался очагом необычайно активной нитрификации, намного превышающей то, что давали материалы, которыми мы пользовались до сих пор.
Действительно, в наших предыдущих исследованиях (2) мы получили максимальную интенсивность нитрификации, периодически заливая раствор аммиачной соли на гранулированный животный уголь. Объем в 1 кубический метр давал нам 0,80% нитратов в сутки, и, следовательно, гектар поверхности селитрчнницы мог позволить получать 5800 тонн селитры в год.
Эти количества, и без того очень высокие, были значительно увеличены заменой животного угля торфом. Действительно, доля нитратов, образующихся за 24 часа, была 6 кг 550 г на кубический метр, т.е. в 8 раз выше, что привело бы к выходу с одного гектара селитрянницы примерно 48000 тонн селитры в год.
Мы привыкли рассматривать нитрификацию как очень медленное явление. Используя торфяную подложку, нам удалось придать ему такую ​​быстроту, что ее можно сравнить с бурным спиртовым брожением. По Буссенго (1) старые селитрянницы давали за два года 5 сырой селитры с кубометра — это меньше, чем дает нам торф за 24 часа. Таким образом, нитрифицирующая активность, которую мы получаем, более чем в 1000 раз выше, чем в старых селитрянницах. Все типы торфа показали себя очень активными, но легкие и губчатые, менее разложившиеся, тем не менее обладают некоторым преимуществом, вероятно, потому, что они допускают более активную циркуляцию воздуха, движение жидкостей в них происходит более планомерным образом, и бактерии получают возможность прикрепиться к огромной нитчатой поверхности. Организмы остаются прикрепленными к этой торфяной опоре и функционируют бесконечно долго, если мы продолжаем их кормить. Нитрифицированная жидкость выходит на дно прозрачной, не увлекая бактерий.
Теперь у нас есть возможность провести на относительно ограниченной установке и в очень короткое время превращение огромных количеств аммиачных солей в нитраты. Но при эксплуатации как мы сказали, выливая раствор сульфата аммония на торф, служащий субстратом для нитрифицирующих организмов, мы вынуждены, чтобы не мешать функционированию последних, пользоваться довольно слабым аммиачным раствором, 7,5 г сульфата аммония на литр, что дает раствор около 1 части нитратов на 100 частей воды, что слишком мало для экономного концентрирования.
Наши исследования показали, что нитрификация может продолжаться в сильно насыщенных нитратами растворах, содержащих до 22 частей в 100 частях раствора. К уже нитрифицированным растворам добавляли аммиачную соль и несколько раз пропускали через окислительный слой, постепенно обогащая жидкость нитратом. Для этой цели мы установили ряд торфяных селитрянниц, через которые последовательно проходит одна и та же жидкость, которая между каждым переходом от одной селитрянницы к другой дополнялась сернокислым аммиаком. Жидкость постепенно насыщается нитратами, а не аммиаком, доза которого никогда не становится достаточно высокой, чтобы препятствовать функционированию нитрифицирующих организмов. Таким образом, мы получили следующие результаты (в граммах селитры на литр): 1-й проход 8.2 г/л 2-й проход 17.4 г/л 3-й проход 25.4 4-й проход 32.9 5-й проход 41.7
Это еще не возможный предел обогащения, который, однако, уже таков, что отвечает экономической добыче. Поэтому с помощью этого процесса можно получать не только быструю нитрификацию, но и концентрированные растворы нитратов. Таким образом, использование торфа в качестве подложки для нитрифицирующих организмов (1) решает проблему интенсивного производства селитры.
Активность нитрификации, которая является биологическим явлением, сильно зависит от температуры. В условиях, в которых мы работали, оптимальная температура была близка к 30° и важно не отклоняться от нее слишком далеко. Вопросом о топливе, необходимом для поддержания тепла селитрянниц, а также о том, что придется использовать для выпаривания жидкостей, не следует пренебрегать. Нет более экономичного топлива, чем торф, который нужно только добывать открытым способом и сушить на воздухе, чтобы его можно было использовать. Размещая селитрянницы на самих торфяных болотах, мы получили бы, таким образом, одновременно и материалы для них, и топливо. Это два основных элемента интенсивной нитрификации; но самым важным элементом само азотсодержащее вещество, сырье для образования нитратов. Мы задались вопросом, не может ли торф также обеспечить это нитрифицируемое вещество. Торф содержит большое количество азота, до 2 или 3 частей на 100 частей его сухого веса. Но в той форме, в которой находится этот азот, т. е. в состоянии гуминового соединения, он инертен, поэтому нельзя непосредственно нитрифицировать азот, содержащийся в торфе в таком изобилии. Но можно ли его удалить в виде аммиачной соли, которую затем использовать как нитрифицируемое вещество?
Это представляет большой интерес для преследуемой нами цели. Если бы ответ на этот вопрос был утвердительным, то торф давал бы все элементы для производства нитратов. Идея использования торфа в химической промышленности уже стара; он почти не исподьзуется во Франции, но другие страны, в частности Германия, предприняли успешные усилия в этом направлении. Промышленники используют торф для получения кокса, смолы, уксусной кислоты, метилового спирта и др., а также более или менее светящего горючего газа. Занимаясь исключительно получением азотистых продуктов, предназначенных служить сырьем для производства селитры, мы с удивлением заметили, что при перегонке лишь небольшая часть азота торфа была обнаружена в состоянии аммиачной воды. Действительно, в работах (1), посвященных технике перегонки торфа, мы находим, что получаемые аммиачные воды содержат едва ли 1/10 азота, имеющегося в торфе. Со своей стороны, перегоняя компактный торф с Соммы, мы получили следующие результаты: Содержание азота в торфе 2.03% В аммиачной воде получено 0,393%
Понятно, что при этих низких выходах извлечение в виде аммиачных солей азота из торфа до сих пор считалось лишь второстепенным. С той точки зрения, с которой мы рассмотрели вопрос, заставивший нас приписать главенствующее значение азоту, мы искали причины этой потери и способы избежать ее.
Мы обнаружили, что при сухой перегонке кокс, составляющий примерно 1/3 массы используемого торфа, сохраняет большие количества азота.
Фактически мы обнаружили, что в среднем в коксах, полученных из Сомского торфа 1,28% азота. Это одна из причин низкого выхода аммиака. Вместо того, чтобы производить сухую перегонку, мы проводили ее в потоке перегретого пара. Тогда результаты были совершенно иными, и почти весь азот в торфе был получен в аммиачном состоянии, как это показано ниже:
Содержание азота в торфе 2,03% В аммиачной воде получилось 1.790 — 1.612%
Для получения этих выходов уголь в коксе должен быть полностью окислен паром; таким образом получается смесь окиси углерода и водорода, называемая в промышленности водяным газом. Таким образом, эта операция приводит к получению большей части аммиака, из соответствующего азоту торфа. Она также дает смолы и другие пирогенные продукты перегонки, кокс же превращается в топливный газ. Для этого требуется больше тепла, но его может обеспечить сам торф и образующиеся газы. Как бы то ни было, здесь мы имеем возможность извлекать из торфа в виде полезного аммиака содержащийся в нем инертный азот.
Поэтому торф представляется нам особенно подходящим для интенсивного производства нитратов, так как представляет чрезвычайно благоприятный субстратдля нитрифицирующих организмов, дает тепло, необходимое для поддержания температуры и выпаривания растворов, и обеспечивает аммиак, сырье для производства нитратов. Торфяные болота представляют собой непродуктивные поверхности, чаще всего неиспользуемые или которые могут быть превращены в сельскохозяйственные угодья только путем сложных и дорогостоящих работ. Можно сказать, что в настоящее время мы извлекаем из них мало пользы и что они являются причиной бедности занимаемых ими районов. Из предыдущего видно, что они представляют собой важные запасы азотистых веществ. Кубометр торфа дает при высыхании 350 кг сухого вещества, в котором содержится 2% азота. При мощности в 1 метр 1 га торфяника может содержаться 70 000 кг азота, иммобилизованного в инертном состоянии; эта цифра часто значительно выше, так как некоторые торфяники имеют мощность 5—6 м. Если учесть площадь торфяных болот, существующих только во Франции, то количество органического азота, которое мы могли бы извлечь из этого вещества, в настоящее время не имеющего ценности, и превратить в нитраты методом, который мы только что разработали, составляет миллионы тонн. Торфяные болота относительно неразвиты, поэтому здесь имеются запасы азота, которые могли бы поставлять нитраты в таком количестве, которое можно сравнить с запасами огромных месторождений Чили.
В других странах, особенно на Севере, торфяники имеют гораздо большее развитие. Таким образом, мы видим возможность производства селитры практически в неограниченных количествах, и нам больше не нужно беспокоиться о препятствиях, которые могут быть поставлены для ввоза селитры из Южной Америки, или об истощении ее месторождений.

]]>
http://popadancev.net.s3-website-us-east-1.amazonaws.com/selitra-i-selitryannicy-2-intensivnaya-nitrifikaciya/feed/ 24
Борьба за точность — 2: Винт http://popadancev.net.s3-website-us-east-1.amazonaws.com/borba-za-tochnost-2-vint/ http://popadancev.net.s3-website-us-east-1.amazonaws.com/borba-za-tochnost-2-vint/#comments Sat, 29 Jan 2022 14:26:12 +0000 http://popadancev.net.s3-website-us-east-1.amazonaws.com/?p=9266 Винт и гайка это не только резьбовое соединение, но и важнейший элемент станков и измерительных приборов. Чтобы винт можно было использовать в этих целях, винт должен иметь постоянный шаг и наклон резбы. Поэтому попаданцу следует знать приемы, с помощью которых такие винты можно изготавливать.

До XVIII в. все винты нарезались или вручную, или на [...]]]> Винт и гайка это не только резьбовое соединение, но и важнейший элемент станков и измерительных приборов. Чтобы винт можно было использовать в этих целях, винт должен иметь постоянный шаг и наклон резбы.
Поэтому попаданцу следует знать приемы, с помощью которых такие винты можно изготавливать.

До XVIII в. все винты нарезались или вручную, или на различных винторезных станках, каким-либо образом копирующих оригинальный винт, тоже нарезанный вручную. Изготавливаемые таким образом резьбовые соединения в целом удовлетворяли потребностям промышленности и техники того времени, но оказались совершенно непригодны, например, для астрономических измерений уже к началу XVIII в.
Изготовители научных приборов и часов делали весьма хитроумные станочки для нарезки достаточно точных винтов, однако лишь небольших.

Кардинальное изменение ситуации началось лишь в 90-х годах XVIII в., когда за эту проблему взялся выдающийся механик Генри Модсли.
Модсли построил станок со сменными шестернями, позволяющими получать любой шаг резьбы при использовании одного ходового винта.

Это была не новая идея (аналогичный принцип использовался в станках Нартова, Сенота, и др., а предложен был еще Леонардо да Винчи), но Модсли приложил огромные усилия для изготовления исходного винта, максимально точно соответствующего употребляемой системе измерений.
Пытаясь получить такой винт, он перепробовал все известные методы, и остановился на способе с наклонным ножом, который при движении вдоль вращающегося цилиндра из дерева или мягкого металла производил достаточно точную нарезку с требуемым шагом.

Установив сделанный таким образом винт в свой станок и нарезав в нем винт из латуни, Модсли получил прочный и износостойкий винт, пригодный в качестве ходового, но содержавший, однако, практически все неточности исходного винта.
И здесь Модсли сделал важное открытие — используя несовершенный ходовой винт, он смог нарезать новый, лишенный большей части погрешностей. Для этого он прогонял резец множество раз, всяческими способами меняя положение участков резьбы исходного и нарезаемого винтов — например, переворачивая ходовой винт, перенося точку крепления ходовой гайки, устанавливая два ходовых винта и закрепляя резец между ними, как в машине да Винчи, и т.д. Также для доводки Модсли использовал плашки, причем он первым применил режущие, а не просто сминающие металл плашки.
При этом все неравномерности усреднялись, и в итоге Модсли смог изготовить весьма севершенный винт длиной около 7 футов, отличавшийся от эталона лишь на 1/16 дюйма, то есть менее чем на 1/1000 общей длины. Поскольку исправить это отклонение с помощью шестеренок оказалось слишком сложно (для этого они должны иметь 999 и 1000 зубцов), был использован очень остроумный метод: на ходовой гайке размещалась ось неравноплечего рычага, короткий конец которого держал резец, а длинный скользил по расположенной под небольшим углом направляющей.

Таким образом, Модсли получил возможность производить винты практически любых размеров и со стандартизированной резьбой, т.е.четко заданным шагом.
Винты Модсли выглядели совершенными, однако исследование специально изготовленного им винта, выполненное в 1810 г. известным производителем научных приборов Эдвардом Троутоном двумя жестко соединенными микроскопами, показало, насколько этот винт далек от идеала.
Основной причиной недостаточной равномерности полученных описанным выше способом эталонных винтов являются дефекты самого станка — например, несовершенство зубчатых колес, люфты и т.д. Можно избавиться от всех этих факторов, просто исключив сам станок, как это сделал Джон Бартон в 1810-х.
По его способу предварительно нарезанный (например, плашкой) винт доводился двумя парами раздвижных плашек, жестко соединенных между собой на расстоянии половины длины винта. Плашки изготавливались таким образом, что одна срезала металл при вращении по часовой стрелке, вторая — против. Таким образом, прогоняя винт много раз и понемногу сдвигая плашки, можно достичь полной идентичности обоих половин винта, после чего плашки переставлялись на расстояние в 1/3 винта и процесс продолжался до их полного сближения. А чтобы исправить непостоянство наклона резыбы, плашки можно поворачивать относительно друг друга. Таким образом достаточно легко уменьшить ошибки винта до 0.01 мм; большую точность достичь не получается из-за влияния теплового расширения металла в ходе рвботы.
Полученный высокоточный винт Бартон использовал в делительной машине, а сам метод двух плашек получил широкое распространение при изготовлении различных приборов и продолжал использоваться до начала XX в.
Проблемой нарезки винтов занимались и другие инженеры и механики. Например, Клемент использовал две раздвижные плашки и резец, закрепленные в раме с нарезаемым стержнем.

При этом плашки сначала служили для нарезания первичной резьбы, которая затем приводилась к единообразности резцом, укрепляемым на разных расстояниях от плашек, выполняющих уже функцию ходовой гайки.
Дальнейшее повышение требований к эталонным винтам связано с оптикой, а именно изготовлением дифракционныых решеток, в которых недопустимы даже самые небольшие отклонения в равномерности расположения штрихов. Поскольку известные на тот момент методы не давали требуемой точности, Генри Роуланду пришлось придумать собственный. Для этого сначала нарезался винт обычной ручной плашкой, а также изготавливалась к нему гайка почти во всю длину винта. Гайка разрезалась вдоль на четыре части и снабжалась оправой, позволяющей сближать все части. Смазаный маслом с порошком наждака винт помещался в гайку, а вся конструкция — в воду с постоянной температурой для предотвращения теплового расширения металла.

Медленно вращая винт и постепенно стягивая оправу, резьбу доводили до высочайшей степени равномерности, на что, однако требовалось до двух недель шлифовки. Поскольку первая и последняя треть резьбы при этом получались несколько хуже, они отрезались.

Используя свой метод, Роуланд добивался высочайшей правильности винта, который устанавливался в специальную делительную машину. Роуланд смог изготавливать решетки с 40000 линий на дюйм и отклонением 1/300000 дюйма, которые позволили записать полный спектр Солнца.

Конечно, достичь такой степени совершенства, которой добивался Роуланд, попаданцу будет сложно, но в упрощенном варианте этот метод хорошо подойдет, например, для микрометров.
Хорошо видно, что в основе всех описанных приемов лежит очень простой принцип — усреднение всех дефектов.

]]> http://popadancev.net.s3-website-us-east-1.amazonaws.com/borba-za-tochnost-2-vint/feed/ 10